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Introduction Inner Product Spaces

Definitions

Let V be a real or complex vector space over a field F of scalars (think <n
over < or C n over C ; but spaces of real-valued or complex valued
functions are other important examples).

Definition

A function from f : V × V → F (for every ordered pair (x,y) of vectors,
we denote f (x , y) by (x , y)) is an inner product on V if
(i) (x , y) = (y , x) (Conjugate symmetry)
(ii) (αx + βy , z) = α(x , z) + β(y , z), ∀α, β ∈ F , ∀x , y , z ∈ V (Linearity)
(iii) (x , x) ≥ 0, with ‘=’iff x = 0. (Nonnegativity)

Remark (1). Recall that if a+ ib and c + id are 2 complex numbers then
their sum is (a+ c) + i(b+ d), their product is
(a+ ib)(c + id) = (ac − bd) + i(ad + bc) (since i2 = −1), their
quotient (a+ib)

(c+id ) =
a+ib
c+id

c−id
c−id =

(ac+bd )+i (bc−ad )
c2+d 2 .

A complex number (a+ ib) can be viewed as the ordered pair (a, b) on
the (complex) plane, so (a2 + b2)1/2 is its distance from the origin.
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Introduction Inner Product Spaces

Definitions

The Conjugate of (a+ ib) is (a− ib), denoted a+ ib, and their sum and
product are real numbers.
Remark (2). Since there’s no difference between a real number and its
conjugate, if V is a real space then (y , x) = (y , x) and condition (i) in the
definition is just symmetry.
Remark (3). Let y = (i , 2− i , 3)T be a (column) vector in C 3. Take its
transpose and then take the conjugate. yT = (−i , 2+ i , 3). We get the
same result if we first take the conjugate vector and then take its
transpose. The ‘conjugate transpose’of a vector y is denoted y ∗. For real
spaces, y ∗ is just yT .

Lemma

Let V be a real or complex n-dimensional v.s. Then the (scalar-valued)
function defined by (x , y) = y ∗x = ∑n

k=1 xk ȳk for every (ordered) pair of
vectors x , y is an inner product on V .

Just check that this function satisfies conditions (i) - (iii) in definition.
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Introduction Inner Product Spaces

Definitions

For example, (y , x) = ∑n
1 yk x̄k = ∑n

1 yk x̄k = ∑n
1 ȳkxk = (x , y). So

conjugate symmetry holds. Note that if V is a real space, the definition of
inner product reduces to the familiar dot product.
Remark (4). Notice that (x , y) = y ∗x , where x is taken as a column
vector, and y ∗ is a row vector (transpose of a column vector).
Remark (5). The benefit of conjugation is that for all x ∈ V , (x , x) is a
real number. Indeed,

(x , x) = x∗x = (a1 − ib1, ..., an − ibn)(a1 + ib1, ..., an + ibn)T
= ∑n

k=1(a
2
k + b

2
k ).

This helps us to define, for each x ∈ V , its norm (or distance from the
origin) as a real number.

Definition
Let V be a real or complex v.s. The Euclidean Norm of a vector x ∈ V ,
denoted ||x || is the real number (x , x)1/2.

We say that our inner product induces the above norm.
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Introduction Inner Product Spaces

Definitions

If x = (x1, ..., xn), where xk = ak + ibk , we write ||x || = (∑n
1 |xk |2)1/2,

where |xk |2 = (a2k + b2k ). For real spaces, (x , x) is the usual Euclidean
distance (∑n

1 x
2
k )
1/2.

Remark (6). Notation and Terminology. Treil uses (x , y) for inner
product; since this is also notation for ordered pair, perhaps more
preferable is < x , y >. But let’s be consistent with our textbook.
Remark (7). A vector space V along with some inner product defined on
it is called an inner product space or a pre-Hilbert space. Once the
inner product is used to induce a norm, we can work with notions of
convergence of sequences etc. A pre-Hilbert space that is “complete"
(w.r.t. the induced norm) is called a Hilbert space. (A pre-Hilbert space
is complete if every Cauchy sequence in it converges to a vector in the
space itself).

Definition

Orthogonality: 2 vectors u, v ∈ V are called orthogonal (denoted by
u ⊥ v) if (u, v) = 0 i.e. inner product is zero.
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Introduction Inner Product Properties

Properties of Inner Product

1 (x , αy + βz) = ᾱ(x , y) + β̄(x , z), ∀α, β ∈ F , x , y , z ∈ V .
Proof. (αy + βz)∗x = ᾱy ∗x + β̄z∗x .

2 Let x ∈ V . Then (x , y) = 0, ∀y ∈ V iff x = 0.
Proof. If x = 0, then (x , y) ≡ y ∗x = 0. If x 6= 0, then there exists y ,
namely y = x , s.t. (x , y) = (x , x) > 0.

3 Let x , y ∈ V . Then (x , z) = (y , z)∀z ∈ V iff x = y .
Proof. By (2), ((x − y), z) = 0∀z iff (x − y) = 0 or x = y . But
((x − y , z) = 0, by linearity of the inner product, means
(x , z)− (y , z) = 0.

4 Suppose A,B : X → Y are LTs or matrices that satisfy
(Ax , y) = (Bx , y), for all x ∈ X and all y ∈ Y . Then A = B.
Proof. For fixed x , (3) implies Ax = Bx . Since we get this no matter
what x we fix, the mappings A,B are identical.
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Introduction Inner Product Properties

Properties of Inner Product ... contd...

Theorem

Property (5) (Cauchy-Schwarz Inequality).
|(x , y)| ≤ ||x || ||y ||, ∀x , y ∈ V .

Proof.
Let x , y ∈ V and t ∈ F . Then
. 0 ≤ ||x − ty ||2 = (x − ty , x − ty) = (x , x − ty)− (ty , x − ty)

= (x , x)− t(x , y)− t(y , x) + t̄(ty , y)
= ||x ||2 − t̄(x , y)− t(y , x) + |t|2 ||y ||2

Now, at t = (x , y)/||y ||2, (which minimizes the quadratic in t in the
real-valued case), thus the expression equals to -

. ||x ||2 − (x ,y )(x ,y )
||y ||2 − (y ,x )(y ,x )

||y ||2 + |(x ,y )|
2 ||y ||2

(||y ||2)2

So at t = (x , y)/||y ||2, 0 ≤ ||x ||2 − |(x ,y )|
2

||y ||2 . QED.
** Think of the Cauchy-Schwarz inequality obtaining from the familiar
cosine rule, since −1 ≤ cos(θ) ≤ 1.**
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Introduction Inner Product Properties

Properties of Inner Product ... contd...

Property (6). Triangle Inequality ||x + y || ≤ ||x ||+ ||y ||, ∀x , y ∈ V .

Proof.

||x + y ||2 = (x + y , x + y) = (x , x) + (x , y) + (y , x) + (y , y). By
Cauchy’s inequality, both (x , y) and (y , x) must be ≤ ||x || ||y ||.
So the RHS is ≤ ||x ||2 + 2||x || ||y ||+ ||y ||2. QED.

We can define a norm more generally than the Euclidean norm.

Definition
A norm on a vector space V is a function that associates, with each
v ∈ V , a real number ||v || s.t.
(i) ||αv || = |α| · ||v ||, ∀v ∈ V , α ∈ F (Homogeneity)
(ii) ||u + v || ≤ ||u||+ ||v ||, ∀u, v ∈ V (Triangle Inequality)
(iii) ||v || ≥ 0, with ‘ =’iff v = 0. (Orthogonal Bases)
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Introduction Inner Product Properties

Definitions

Recall that 2 vectors u, v ∈ V are called orthogonal (denoted u ⊥ v) if
(u, v) = 0. (The motivation is again the cosine rule, since cos(π/2) = 0).
Note, (u, v) = v ∗u = 0, implies, taking conjugate transpose of both
sides, (v ∗u)∗ = u∗v = 0∗ = 0, i.e. (v , u) = 0. So u ⊥ v iff v ⊥ u.

Definition

A vector v is orthogonal to a subspace E if v ⊥ w , ∀w ∈ E .

Lemma

Let span({w1, ...,wr}) = E. Then v ⊥ E iff v ⊥ wk , ∀k = 1, ..., r .

Proof.

Suppose v ⊥ wk , ∀k = 1, ..., r and let w ∈ E . So, w = ∑r
1 ckwk for some

ck’s. So, (w , v) = (∑r
1 ckwk , v) = ∑r

1 ck (wk , v) = 0. So v ⊥ w , ∀w ∈ E .
Conversely v not ⊥ wi , for some i , implies v is not orthogonal to E .
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Introduction Inner Product Properties

Definitions contd...

Definition

A set of vectors {v1, ..., vn} is orthogonal if every pair
vi ⊥ vj , ∀i , j ∈ {1, ..., n}, i 6= j .

Lemma

A set of vectors {v1, ..., vn} is non-zero & orthogonal implies that
{v1, ..., vn} linearly independent.

Proof.

Let ∑ civi = 0. So, (∑ civi , vj ) = 0. Now,
(∑ civi , vj ) = ∑i 6=j ci (vi , vj ) + cj ||vj ||2, which due to orthogonality equals
to cj ||vj ||2. Since ||vj ||2 > 0, this implies cj = 0. Since this is true
irrespective of choice of j , LI follows.
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Introduction Inner Product Properties

The Representation

Suppose we represent a vector v ∈ V in terms of a basis {v1, ..., vn}, as
v = ∑ civi . In order to find the Representation (i.e. the ci’s) we have to
solve a system of linear equations, namely Ac = v , where
A = (v1 v2 ... vn) is the matrix whose columns are the basis vectors, and
c = (c1, ..., cn)T .
However, if the basis is orthogonal, and v = ∑ civi , we don’t need to solve
a linear system to find the ci’s. Instead, notice that for any k = 1, ..., n,
(v , vk ) = (∑ civi , vk ) = ∑i 6=k ci (vi , vk ) + ck ||vk ||2, which, due to
orthogonality, equals to ck ||vk ||2. So, we have -
ck =

(v ,vk )
||vk ||2 , ∀k = 1, ..., n.
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Introduction Orthogonal Projections

Orthogonal Projection Definition

Definition
Let v ∈ V and E a subspace of V . The orthogonal projection of v onto
E , denoted PE v , is the vector w ∈ E s.t. (v − w) ⊥ E .

This presumes an orthogonal projection always exists and is unique.
Visually, we are dropping a perpendicular from v to a plane or hyperplane
E . If PE v exists, it is unique.

Theorem

PE v minimises distance from v to E: ||v − PE v || ≤ ||v − x ||, ∀x ∈ E,
and ‘ =’⇒ x = PE v.

Proof.

Let PE v ≡ w . Since w , x ∈ E and E is a subspace, (w − x) ∈ E . Since
(v − w) ⊥ E , (v − w) ⊥ (w − x). Applying Pythagorean theorem to the
right triangle ∆vwx , ||v − x ||2 = ||v − w ||2 + ||w − x ||2 ≥ ||v − w ||2.
Thus the equality holds iff x = w .
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Introduction Orthogonal Projections

Computing Orthogonal Projection

Proposition. Let {w1, ...,wr} be an orthogonal basis in E . Then
PE v = w = ∑r

k=1 αkwk , where αk =
(v ,wk )
||wk ||2 , ∀k = 1, ..., r .

Proof. Write PE v ≡ w . Since w ∈ E , w = ∑r
k=1 ckwk , where

ck =
(w ,wk )
||wk ||2 . Finally, since v = w + (v − w) and

(v − w) ⊥ wk , ∀k = 1, ..., r , we have
(v ,wk ) = (w + v − w ,wk ) = (w ,wk ) + (v − w ,wk ) = (w ,wk ).
Note. (1) Basically, the scalars in the LC for the projection w involve
(v ,wk ) rather than (w ,wk ) because v = w + (v − w), and (v − w) has
zero inner product with vectors in E , being orthogonal.

Note. (2) The projection PE is a LT (PE : V → V ). Indeed, for vectors

v , v
′
and scalars c1, c2, we have PE (c1v + c2v

′
) = ∑r

k=1
(c1v+c2v

′
,vk )

||vk ||2 vk .
By linearity of inner product, this

= c1 ∑ (v ,vk )
||vk ||2 vk + c2 ∑ (v

′
,vk )

||vk ||2 vk = c1PE v + c2PE v
′
.
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Introduction Orthogonal Projections

Orthogonal Complement

Note. (3) PE = ∑r
k=1

1
||vk ||2wkw

∗
k (where {w1, ...,wr} is an orthogonal

basis in E ). If V is n-dimensional, wk is a n× 1 vector, so that wkw ∗k is
an n× n matrix. Indeed,
PE v = ∑ (v ,wk )

||wk ||2wk = ∑ 1
||wk ||2wk (v ,wk ) = ∑ 1

||wk ||2wkw
∗
k v .

The 2nd equality follows since (v ,wk ) is a scalar.

Definition
Let V be a v.s. and E be a subspace of V . Then the orthogonal
complement of E in V , denoted E⊥ (pronounced, E perp) is the set of
vectors u such that u is orthogonal to all vectors in E i.e.{u ∈ V |u ⊥ E}.

Note. (4) (i) E⊥ is a subspace. (ii) (E⊥)⊥ = E .
Note. (5) v = PE v + (v − PE v) is the unique representation of v as the
sum of 2 vectors, one lying in E (namely PE v) and the other (namely
(v − PE v)) lying in E⊥. Uniqueness results from the uniqueness of PE v .
We write V = E ⊕ E⊥. In <2, (x1, x2) = (x1, 0) + (0, x2) is the simplest
such representation, with E being the horizontal axis.
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Introduction Orthogonal Projections

Orthogonal Complement - Example

Ex-1. Let V = R2 and W be the subspace spanned by (1, 2). Then W⊥

is the set of vectors (a, b) with
(a, b) · c(1, 2) = 0 , (where c 6= 0 be some constant)

or, ac + 2bc = 0⇒ a+ 2b = 0.
This is a 1 dimensional vector space spanned by (-2,1).
In the example above the orthogonal complement was a subspace. This
will always be the case.

Ex-2. For more of an explanatory example on this please refer to page 2
of Lecture Notes 6.
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Introduction Orthogonal Projections

Orthogonalisation: The Gram Schmidt Procedure
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Introduction Orthogonal Projections

Application - Least Squares ... I

You have a model which explains the wage y of an individual as a function
of k explanatory variables, such as years of schooling, gender etc.

Say, y = ∑j xjβj + ε, where ε, x ′j s are random variables. This is the
true model in the population but you do not know the βj’s.
One way to estimate them is as follows:

You collect data on say the wages of n individuals, yi equals wage of
individual i , as well as on k variables that may explain wage
(xi1, ..., xik ) ≡ xTi , for individual i). Typically, n >> k. You want βi’s
that minimise ∑n

i=1(yi − xTi β̂)2. ←: the sum of squares of errors.
That means, choose β̂ = (β̂1, ..., β̂k )

T to minimise ||y − X β̂||2,
where y = (y1, ..., yn)T , and X is the n× k matrix whose jth column
contains observations xij for all individuals i . Since ||y − X β̂||2 ≥ 0, this is
minimised iff ||y − X β̂|| is minimised.
If we can find β̂ that solves the linear system y = X β̂ we are done. But
since n >> k, Rank(X ) ≤ k < n, and y ∈ <n, it is ‘unlikely’that
y ∈ R(X ), the span of the columns of X . (Note X : <k → <n).
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Introduction Orthogonal Projections

Least Squares ... II

So the general problem is to find β̂ s.t. X β̂ = PR (X )y , i.e. s.t. X β̂ is the
orthogonal projection of y onto R(X ), as this minimizes the distance
between y and R(X ). (Notice that for any β, X β ∈ R(X ); we want the
X β which is the closest point to y , from R(X )).
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Introduction Orthogonal Projections

Least Squares ... III

If we know an orthogonal basis, (or construct one using say Gram-Schmidt
method) in the subspace R(X ), it is easy to get PR (X )y ; then just solve
the linear system X β̂ = PR (X )y for β̂. But constructing an orthogonal
basis takes more calculations than the following simpler method.

If X β̂ is the orthogonal projection of y onto R(X ), then
(y − X β̂) ⊥ xj , for all columns xj , j = 1, ..., k of X ,

because y − X β̂ is orthogonal to every vector in R(X ).
So, x∗j (y − X β̂) = 0, ∀j = 1, ..., k.
Stacking the rows x∗j , we have

X ∗k×n(y − X β̂) = 0,
or X ∗X β̂ = X ∗y .
This is a linear system called the Normal Equations and can be solved
for β̂.
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Introduction Orthogonal Projections

Least Squares ... IV

If (X ∗X )k×k has full rank k (which happens iff X has full rank k), we also
get β̂ = (X ∗X )−1X ∗y . Note that in econometrics, the “data matrix”X is
likely to have only real entries, so that the “star" or conjugate transpose
above can be replaced with a “T”or transpose.

Before we close the section with a theorem on matrices like X ∗X , we note
that a k × k possibly complex matrix A : C k → C k (or A : <k → <k if A
is real) is invertible iff Rank(A) = k iff Nullity(A) = 0. For, to be
invertible, A needs to be a bijection from C k → C k .
Rank(A) = k ⇒ R(A) = C k , so A is surjective. Moreover, if 2 vectors
v1 6= v2, then Av1 6= Av2. Because Av1 = Av2 ⇒ (v1 − v2) ∈ N(A). But
Rank(A) = k ⇒ N(A) = {0}, so this can’t be true. So, A is injective.
So, A is bijective.
We end by showing that X ∗X has full rank k iff X does.
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Introduction Orthogonal Projections

Least Squares ... V

Theorem

Let X be n× k, n >> k. Then X ∗X is invertible iff Rank(X ) = k.

Proof.

X ∗X is invertible iff Nullity(X ∗X ) = 0. Rank(X ) = k iff Nullity(X ) = 0.
So we are done if we show Nullity(X ∗X ) = 0 iff Nullity(X ) = 0.
We show the stronger result that N(X ∗X ) = N(X ). Indeed, let
b ∈ N(X ), so Xb = 0. So X ∗Xb = 0. So b ∈ N(X ∗X ).
Conversely, let b ∈ N(X ∗X ). So, X ∗Xb = 0. So, (X ∗Xb, b) = 0 or
b∗X ∗Xb = 0 or (Xb,Xb) = 0. So, Xb = 0 or b ∈ N(X ).

[SB] (Delhi School of Economics) Introductory Math Econ 22nd August 2013 21 / 27



Introduction Fundamental Subspaces

Identity Property of Adjoint Matrix

Definitions

(Ax , y) = (x ,A∗y) ∀x , y ∈ Cn

Proof.
Now, to prove the main identity:
(Ax , y) = y ∗A︸︷︷︸ x = (A∗y)∗x = (x ,Ay),
the first and the last equalities here follow from the definition of inner
product in F n, and the middle one follows from the fact that
(A∗y)∗ = y ∗(A∗)∗ = y ∗A. We also have used here, (AB)∗ = B∗A∗.

Fact
Let us note that the adjoint operator is unique: if a matrix B satisfies
(Ax , y) = (x ,By) ∀x , y then B = A∗.
Indeed, by the definition of A∗ we get (x ,A∗y) = (x ,By) ∀x and
therefore by [Corollary 1.5 Treil 118] A∗y = By. Since it is true for all y ,
the linear transformations, and therefore the matrices A∗ and B coincide.[SB] (Delhi School of Economics) Introductory Math Econ 22nd August 2013 22 / 27



Introduction Fundamental Subspaces

Relation between Range and Null Spaces
Of A and A∗

Consider an LT A : V → W

Theorem

RanA∗ = (NullA)⊥.

Proof.

NullA = {z |Az = 0}. Az = 0 iff z∗A∗ = 0∗ (taking conjugate transpose).
That is, iff z∗ai = 0∗, or a∗i z = 0, ∀ columns ai of A∗.
That is, iff z ⊥ ai for all columns ai of A∗, iff z ⊥ RanA∗.
So, NullA = {z |z ⊥ RanA∗}. (In the real matrix case, just think of N(A)
as all vectors z orthogonal to the rows of A and hence to the columns of
AT and hence to R(AT )).
So, NullA = (RanA∗)⊥. Taking orthogonal complements on both sides,
(NullA)⊥ = RanA∗.

As a corollary, interchanging A and A∗, we get (NullA∗)⊥ = RanA.
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Introduction Fundamental Subspaces

Relation between Range and Null of A contd...

Consider an LT A : V → W

Theorem

NullA∗ = (RanA)⊥.

Proof.
Let w ∈ W . Then
w ∈ null(A∗)⇔ A∗w = 0
Now, (v ,A∗w) = 0 for all v ∈ V which is orth. comp. to N(A*)
⇔ (Av ,w) = 0 for all v ∈ V (by Indentity property of Adjoint)
⇔ w ∈ (RanA)⊥.

Thus NullA∗ = (RanA)⊥

Note: If we take the orthogonal complement of both sides of the previous
result, we then get RanA = (Null(A∗))⊥.
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Introduction Fundamental Subspaces

A as a Composition
w.r.t. Fundamental Subspaces

Definition
A LT T : V → W is an isomorphism if it is invertible.

If such an isomorphism (a LT from V to W ) exists, it can be shown that
V and W have the same dimension (say n). Looking at things in terms of
some bases, they are both practically like <n. For example if {v1, ..., vn} is
a basis in V , a vector x ∈ V is expressed as the unique LC x = ∑ xivi . So
the scalars (x1, ..., xn) express x w.r.t. this basis, and this is exactly like
looking at a vector in <n. Similarly for vectors in W . The point is, V and
W are practically like the same space with different names.
Now turn to a matrix A. Say A : V → W . From the result on the
fundamental subspaces, we can decompose the action v 7→ Av in two:
First, v is carried to PN (A)⊥v in N(A)

⊥ or R(A∗). Then, the linear
transformation A restricted to the domain R(A∗), i.e. A|R (A∗), carries
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Introduction Fundamental Subspaces

A as a Composition

PN (A)⊥v to Av in R(A). In other words, A is a composition of 2 LTs.
Indeed, A|R (A∗) is an isomorphism between R(A∗) and R(A), (and can be
represented by an r × r submatrix of A, where
r = Rank(A) = Rank(A∗)). We have the

Theorem

A is a composition of two LTs: A = A|R (A∗)PR (A∗).

Proof.

Since V = N(A)⊥ ⊕N(A) = R(A∗)⊕N(A), for any v ∈ V we have the
unique orthogonal decomposition v = v1 + v2, where
v1 = PR (A∗)v ∈ R(A∗) and v2 ∈ N(A). So, Av = A(v1 + v2) = Av1. And
Av1 is just equal to APR (A∗)v . So for all v ∈ V , we have
Av = APR (A∗)v .

We end by showing that A|R (A∗) is an isomorphism from R(A∗) to R(A).
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Introduction Fundamental Subspaces

Fundamental Subspaces of A

Theorem

A|R (A∗) : R(A∗)→ R(A) is an isomorphism.

Proof.

A is a LT. It remains to show that it (restricted to the domain above) is a
bijection.
(i) Let v , v

′ ∈ R(A∗) and Av = Av ′ . So (v − v ′) ∈ N(A), and so
v = v

′
+ (v − v ′) is the unique decomposition of v w.r.t. N(A)⊥ ⊕N(A).

However, since v ∈ N(A)⊥, its (unique) decomposition on N(A)⊥ ⊕N(A)
must be v = v + 0. so, v

′
= v , and A|R (A∗) is injective.

(ii) Let w ∈ R(A). So w = Av for some v ∈ V . Since v has a unique
decomposition v = v1 + v2 where v1 ∈ N(A)⊥ ≡ R(A∗) and v2 ∈ N(A),
Av = Av1, so w has a preimage v1 ∈ R(A∗). So, AR (A∗) is surjective as
well.
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