Lec 3: Mathematical Economics Inner Product Spaces

Sugata Bag

Delhi School of Economics

22nd August 2013

[SB] (Delhi School of Economics)

Introductory Math Econ

22nd August 2013 1 / 27

- ∢ ≣ →

47 ▶

Definitions

Let V be a real or complex vector space over a field F of scalars (think \Re^n over \Re or C^n over C; but spaces of real-valued or complex valued functions are other important examples).

Definition

A function from $f: V \times V \to F$ (for every ordered pair (x,y) of vectors, we denote f(x, y) by (x, y)) is an **inner product** on V if (i) (x, y) = (y, x) (Conjugate symmetry) (ii) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z), \forall \alpha, \beta \in F, \forall x, y, z \in V$ (Linearity) (iii) $(x, x) \ge 0$, with '=' iff x = 0. (Nonnegativity)

Remark (1). Recall that if a + ib and c + id are 2 complex numbers then their sum is (a + c) + i(b + d), their product is (a + ib)(c + id) = (ac - bd) + i(ad + bc) (since $i^2 = -1$), their quotient $\frac{(a+ib)}{(c+id)} = \frac{a+ib}{c+id} \frac{c-id}{c-id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$. A complex number (a + ib) can be viewed as the ordered pair (a, b) on the (complex) plane so $(a^2 + b^2)^{1/2}$ is its distance from the origin a = 2200[58] (Delhi School of Economics) (a = 2200 August 2013 (a = 2/27)

Definitions

The **Conjugate** of (a + ib) is (a - ib), denoted $\overline{a + ib}$, and their sum and product are real numbers.

Remark (2). Since there's no difference between a real number and its conjugate, if V is a real space then $\overline{(y, x)} = (y, x)$ and condition (i) in the definition is just symmetry.

Remark (3). Let $y = (i, 2 - i, 3)^T$ be a (column) vector in C^3 . Take its transpose and then take the conjugate. $\overline{y^T} = (-i, 2 + i, 3)$. We get the same result if we first take the conjugate vector and then take its transpose. The 'conjugate transpose' of a vector y is denoted y^* . For real spaces, y^* is just y^T .

Lemma

Let V be a real or complex n-dimensional v.s. Then the (scalar-valued) function defined by $(x, y) = y^*x = \sum_{k=1}^n x_k \bar{y_k}$ for every (ordered) pair of vectors x, y is an **inner product** on V.

Just check that this function satisfies conditions (i) - (iii) in definition.

Inner Product Spaces

Definitions

For example, $\overline{(y,x)} = \overline{\sum_{1}^{n} y_k \bar{x_k}} = \sum_{1}^{n} \overline{y_k \bar{x_k}} = \sum_{1}^{n} \overline{y_k} x_k = (x,y)$. So conjugate symmetry holds. Note that if V is a real space, the definition of inner product reduces to the familiar dot product. **Remark (4).** Notice that $(x, y) = y^* x$, where x is taken as a column vector, and y^* is a row vector (transpose of a column vector). **Remark (5).** The benefit of conjugation is that for all $x \in V$, (x, x) is a

real number. Indeed,

$$(x, x) = x^* x = (a_1 - ib_1, ..., a_n - ib_n)(a_1 + ib_1, ..., a_n + ib_n)^T = \sum_{k=1}^n (a_k^2 + b_k^2).$$

This helps us to define, for each $x \in V$, its *norm* (or distance from the origin) as a real number.

Definition

Let V be a real or complex v.s. The **Euclidean Norm** of a vector $x \in V$, denoted ||x|| is the real number $(x, x)^{1/2}$.

We say that our inner product **induces** the above norm * (=) (=)

Inner Product Spaces

Definitions

If $x = (x_1, ..., x_n)$, where $x_k = a_k + ib_k$, we write $||x|| = (\sum_{k=1}^{n} |x_k|^2)^{1/2}$, where $|x_k|^2 = (a_k^2 + b_k^2)$. For real spaces, (x, x) is the usual Euclidean distance $(\sum_{i=1}^{n} x_{i}^2)^{1/2}$. **Remark (6).** Notation and Terminology. Treil uses (x, y) for inner product; since this is also notation for ordered pair, perhaps more preferable is $\langle x, y \rangle$. But let's be consistent with our textbook. **Remark (7).** A vector space V along with some inner product defined on it is called an **inner product space** or a **pre-Hilbert space**. Once the inner product is used to induce a norm, we can work with notions of convergence of sequences etc. A pre-Hilbert space that is "complete" (w.r.t. the induced norm) is called a **Hilbert space**. (A pre-Hilbert space is complete if every Cauchy sequence in it converges to a vector in the space itself).

Definition

Orthogonality: 2 vectors $u, v \in V$ are called **orthogonal** (denoted by $(\mu, \nu) = 0$ i.e. inner product is zero [SB] (Delhi School of Economics) Introductory Math Econ 22nd August 2013

5 / 27

Properties of Inner Product

$$(x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z), \ \forall \alpha, \beta \in F, x, y, z \in V.$$

Proof. $(\alpha y + \beta z)^* x = \overline{\alpha} y^* x + \overline{\beta} z^* x.$

- ② Let x ∈ V. Then (x, y) = 0, $\forall y \in V$ iff x = 0. Proof. If x = 0, then (x, y) ≡ y*x = 0. If x ≠ 0, then there exists y, namely y = x, s.t. (x, y) = (x, x) > 0.
- Let $x, y \in V$. Then $(x, z) = (y, z) \forall z \in V$ iff x = y. Proof. By (2), $((x - y), z) = 0 \forall z$ iff (x - y) = 0 or x = y. But ((x - y, z) = 0, by linearity of the inner product, means (x, z) - (y, z) = 0.
- Suppose A, B : X → Y are LTs or matrices that satisfy (Ax, y) = (Bx, y), for all x ∈ X and all y ∈ Y. Then A = B. Proof. For fixed x, (3) implies Ax = Bx. Since we get this no matter what x we fix, the mappings A, B are identical.

イロト 不得 トイヨト イヨト ニヨー

27

Properties of Inner Product ... contd...

Theorem

Property (5) (Cauchy-Schwarz Inequality). $|(x, y)| \le ||x|| ||y||, \forall x, y \in V.$

Proof.

Let
$$x, y \in V$$
 and $t \in F$. Then

$$0 \leq ||x - ty||^{2} = (x - ty, x - ty) = (x, x - ty) - (ty, x - ty)$$

$$= (x, x) - \overline{t}(x, y) - t(y, x) + \overline{t}(ty, y)$$

$$= ||x||^{2} - \overline{t}(x, y) - t(y, x) + |t|^{2} ||y||^{2}$$
Now, at $t = (x, y) / ||y||^{2}$, (which minimizes the quadratic in t in the
real-valued case), thus the expression equals to -

$$||x||^{2} - \frac{(x,y)(x,y)}{||y||^{2}} - \frac{(y,x)(y,x)}{||y||^{2}} + \frac{|(x,y)|^{2}||y||^{2}}{(||y||^{2})^{2}}$$
So at $t = (x, y) / ||y||^{2}$, $0 \leq ||x||^{2} - \frac{|(x,y)|^{2}}{||y||^{2}}$. *QED*.
** Think of the Cauchy-Schwarz inequality obtaining from the familiar
cosine rule, since $-1 \leq \cos(\theta) \leq 1$.**

Properties of Inner Product ... contd...

Property (6). Triangle Inequality $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in V$.

Proof.

$$\begin{split} ||x+y||^2 &= (x+y,x+y) = (x,x) + (x,y) + (y,x) + (y,y). \text{ By} \\ \text{Cauchy's inequality, both } (x,y) \text{ and } (y,x) \text{ must be } \leq ||x|| \; ||y||. \\ \text{So the RHS is} &\leq ||x||^2 + 2||x|| \; ||y|| + ||y||^2. \quad \text{QED.} \end{split}$$

We can define a norm more generally than the Euclidean norm.

Definition

A norm on a vector space V is a function that associates, with each $v \in V$, a real number ||v|| s.t. (i) $||\alpha v|| = |\alpha| \cdot ||v||$, $\forall v \in V$, $\alpha \in F$ (Homogeneity) (ii) $||u + v|| \le ||u|| + ||v||$, $\forall u, v \in V$ (Triangle Inequality) (iii) $||v|| \ge 0$, with '=' iff v = 0. (Orthogonal Bases)

Definitions

Recall that 2 vectors $u, v \in V$ are called **orthogonal** (denoted $u \perp v$) if (u, v) = 0. (The motivation is again the cosine rule, since $\cos(\pi/2) = 0$). **Note**, $(u, v) = v^*u = 0$, implies, taking conjugate transpose of both sides, $(v^*u)^* = u^*v = 0^* = 0$, i.e. (v, u) = 0. So $u \perp v$ iff $v \perp u$.

Definition

A vector v is orthogonal to a subspace E if $v \perp w$, $\forall w \in E$.

Lemma

Let
$$span(\{w_1, ..., w_r\}) = E$$
. Then $v \perp E$ iff $v \perp w_k$, $\forall k = 1, ..., r$.

Proof.

Suppose $v \perp w_k$, $\forall k = 1, ..., r$ and let $w \in E$. So, $w = \sum_{1}^{r} c_k w_k$ for some c_k 's. So, $(w, v) = (\sum_{1}^{r} c_k w_k, v) = \sum_{1}^{r} c_k (w_k, v) = 0$. So $v \perp w, \forall w \in E$. Conversely v not $\perp w_i$, for some i, implies v is not orthogonal to E.

Definitions contd...

Definition

A set of vectors $\{v_1, ..., v_n\}$ is orthogonal if every pair $v_i \perp v_j, \forall i, j \in \{1, ..., n\}, i \neq j$.

Lemma

A set of vectors $\{v_1, ..., v_n\}$ is non-zero & orthogonal implies that $\{v_1, ..., v_n\}$ linearly independent.

Proof.

Let $\sum c_i v_i = 0$. So, $(\sum c_i v_i, v_j) = 0$. Now, $(\sum c_i v_i, v_j) = \sum_{i \neq j} c_i(v_i, v_j) + c_j ||v_j||^2$, which due to orthogonality equals to $c_j ||v_j||^2$. Since $||v_j||^2 > 0$, this implies $c_j = 0$. Since this is true irrespective of choice of j, LI follows.

イロト 不得 トイヨト イヨト 二日

The Representation

Suppose we represent a vector $v \in V$ in terms of a basis $\{v_1, ..., v_n\}$, as $v = \sum c_i v_i$. In order to find the **Representation** (i.e. the c_i 's) we have to solve a system of linear equations, namely Ac = v, where $A = (\mathbf{v_1} \ \mathbf{v_2} \ \dots \ \mathbf{v_n})$ is the matrix whose columns are the basis vectors, and $c = (c_1, ..., c_n)^T$. However, if the basis is orthogonal, and $v = \sum c_i v_i$, we don't need to solve a linear system to find the c_i 's. Instead, notice that for any k = 1, ..., n, $(v, v_k) = (\sum c_i v_i, v_k) = \sum_{i \neq k} c_i(v_i, v_k) + c_k ||v_k||^2$, which, due to orthogonality, equals to $c_k ||v_k||^2$. So, we have $c_k = \frac{(v, v_k)}{||v_k||^2}, \ \forall k = 1, ..., n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Orthogonal Projection Definition

Definition

Let $v \in V$ and E a subspace of V. The orthogonal projection of v onto E, denoted $P_E v$, is the vector $w \in E$ s.t. $(v - w) \perp E$.

This presumes an orthogonal projection always exists and is unique. Visually, we are dropping a perpendicular from v to a plane or hyperplane *E*. If $P_E v$ exists, it is unique.

Theorem

 $P_E v$ minimises distance from v to E: $||v - P_E v|| \le ||v - x||$, $\forall x \in E$, and '=' $\Rightarrow x = P_E v$.

Proof.

Let $P_E v \equiv w$. Since $w, x \in E$ and E is a subspace, $(w - x) \in E$. Since $(v - w) \perp E$, $(v - w) \perp (w - x)$. Applying Pythagorean theorem to the right triangle Δvwx , $||v - x||^2 = ||v - w||^2 + ||w - x||^2 \ge ||v - w||^2$. Thus the equality holds iff v - w. [SB] (Delhi School of Economics) Introductory Math Econ 22nd August 2013 12/27

Computing Orthogonal Projection

Proposition. Let $\{w_1, ..., w_r\}$ be an orthogonal basis in *E*. Then $P_E v = w = \sum_{k=1}^r \alpha_k w_k$, where $\alpha_k = \frac{(v, w_k)}{||w_k||^2}$, $\forall k = 1, ..., r$. **Proof**. Write $P_E v \equiv w$. Since $w \in E$, $w = \sum_{k=1}^r c_k w_k$, where $c_k = \frac{(w, w_k)}{||w_k||^2}$. Finally, since v = w + (v - w) and $(v - w) \perp w_k$, $\forall k = 1, ..., r$, we have $(v, w_k) = (w + v - w, w_k) = (w, w_k) + (v - w, w_k) = (w, w_k)$.

Note. (1) Basically, the scalars in the LC for the projection w involve (v, w_k) rather than (w, w_k) because v = w + (v - w), and (v - w) has zero inner product with vectors in E, being orthogonal.

Note. (2) The projection P_E is a LT $(P_E : V \to V)$. Indeed, for vectors v, v' and scalars c_1, c_2 , we have $P_E(c_1v + c_2v') = \sum_{k=1}^r \frac{(c_1v + c_2v', v_k)}{||v_k||^2}v_k$. By linearity of inner product, this

$$= c_1 \sum_{\substack{||v_k||^2 \\ ||v_k||^2}} (v_k + c_2 \sum_{\substack{|v',v_k| \\ ||v_k||^2}} (v_k) = c_1 P_E v + c_2 P_E v'.$$

Orthogonal Complement

Note. (3) $P_E = \sum_{k=1}^r \frac{1}{||v_k||^2} w_k w_k^*$ (where $\{w_1, ..., w_r\}$ is an orthogonal basis in E). If V is *n*-dimensional, w_k is a $n \times 1$ vector, so that $w_k w_k^*$ is an $n \times n$ matrix. Indeed,

$$P_E \mathbf{v} = \sum \frac{(v, w_k)}{||w_k||^2} w_k = \sum \frac{1}{||w_k||^2} w_k(v, w_k) = \sum \frac{1}{||w_k||^2} w_k w_k^* v.$$
The 2nd equality follows since (v, w_k) is a scalar.

The 2nd equality follows since (v, w_k) is a scalar.

Definition

Let V be a v.s. and E be a subspace of V. Then the **orthogonal complement** of E in V, denoted E^{\perp} (pronounced, E perp) is the set of vectors **u** such that **u** is orthogonal to all vectors in E i.e. $\{u \in V | u \perp E\}$.

Note. (4) (i) E^{\perp} is a subspace. (ii) $(E^{\perp})^{\perp} = E$. Note. (5) $v = P_E v + (v - P_E v)$ is the unique representation of v as the sum of 2 vectors, one lying in E (namely $P_E v$) and the other (namely $(v - P_E v)$) lying in E^{\perp} . Uniqueness results from the uniqueness of $P_E v$. We write $V = E \oplus E^{\perp}$. In \Re^2 , $(x_1, x_2) = (x_1, 0) + (0, x_2)$ is the simplest such representation, with E being the horizontal axis.

Orthogonal Complement - Example

Ex-1. Let $V = R^2$ and W be the subspace spanned by (1, 2). Then W^{\perp} is the set of vectors (a, b) with

 $(a, b) \cdot \mathbf{c}(1, 2) = 0$, (where $\mathbf{c} \neq 0$ be some constant)

or, $ac + 2bc = 0 \Rightarrow a + 2b = 0$. This is a 1 dimensional vector space spanned by (-2,1). In the example above the orthogonal complement was a subspace. This will always be the case.

Ex-2. For more of an explanatory example on this please refer to page 2 of Lecture Notes 6.

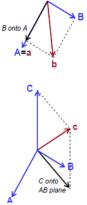
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Orthogonalisation: The Gram Schmidt Procedure

- The Gram-Schmidt orthogonalization procedure operates as follows
 - Start with A=a
 - This gives the first direction
 - · The second direction must be perpendicular to A
 - Start with B=b and subtract its projection along A
 - This leaves the perpendicular part, which is the orthogonal vector B ^B

- · The third direction must be perpendicular to A and B
 - Start with C=c and subtract its projections along A and B

 The resulting vectors {A,B,C} are orthogonal and span the same space as {a,b,c}



Application - Least Squares ... I

You have a model which explains the wage y of an individual as a function of k explanatory variables, such as years of schooling, gender etc.

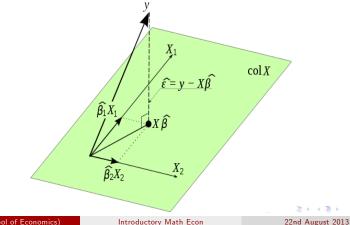
Say, $y = \sum_j x_j \beta_j + \epsilon$, where ϵ , $x'_j s$ are random variables. This is the true model in the population but you do not know the β_j 's. One way to estimate them is as follows:

You collect data on say the wages of *n* individuals, y_i equals wage of individual *i*, as well as on *k* variables that may explain wage $(x_{i1}, ..., x_{ik}) \equiv x_i^T$, for individual *i*). Typically, n >> k. You want β_i 's that minimise $\sum_{i=1}^n (y_i - x_i^T \hat{\beta})^2$. \leftarrow : the sum of squares of errors.

That means, choose $\hat{\beta} = (\hat{\beta}_1, ..., \hat{\beta}_k)^T$ to minimise $||y - X\hat{\beta}||^2$, where $y = (y_1, ..., y_n)^T$, and X is the $n \times k$ matrix whose *j*th column contains observations x_{ij} for all individuals *i*. Since $||y - X\hat{\beta}||^2 \ge 0$, this is minimised iff $||y - X\hat{\beta}||$ is minimised.

Least Squares ... II

So the general problem is to find $\hat{\beta}$ s.t. $X\hat{\beta} = P_{R(X)}y$, i.e. s.t. $X\hat{\beta}$ is the orthogonal projection of y onto R(X), as this minimizes the distance between y and R(X). (Notice that for any β , $X\beta \in R(X)$; we want the $X\beta$ which is the closest point to y, from R(X)).



18 / 27

Least Squares ... III

If we know an orthogonal basis, (or construct one using say Gram-Schmidt method) in the subspace R(X), it is easy to get $P_{R(X)}y$; then just solve the linear system $X\hat{\beta} = P_{R(X)}y$ for $\hat{\beta}$. But constructing an orthogonal basis takes more calculations than the following simpler method.

If $X\hat{\beta}$ is the orthogonal projection of y onto R(X), then $(y - X\hat{\beta}) \perp x_j$, for all columns x_j , j = 1, ..., k of X, because $y - X\hat{\beta}$ is orthogonal to every vector in R(X). So, $x_j^*(y - X\hat{\beta}) = 0$, $\forall j = 1, ..., k$. Stacking the rows x_j^* , we have $X_{k \times p}^*(y - X\hat{\beta}) = 0$,

or

This is a linear system called **the Normal Equations** and can be solved for $\hat{\beta}$.

 $X^*X\hat{\beta} = X^*v.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Least Squares ... IV

If $(X^*X)_{k\times k}$ has full rank k (which happens iff X has full rank k), we also get $\hat{\beta} = (X^*X)^{-1}X^*y$. Note that in econometrics, the "data matrix" X is likely to have only real entries, so that the "star" or conjugate transpose above can be replaced with a "T" or transpose.

Before we close the section with a theorem on matrices like X^*X , we note that a $k \times k$ possibly complex matrix $A : C^k \to C^k$ (or $A : \Re^k \to \Re^k$ if Ais real) is invertible iff Rank(A) = k iff Nullity(A) = 0. For, to be invertible, A needs to be a bijection from $C^k \to C^k$. $Rank(A) = k \Rightarrow R(A) = C^k$, so A is surjective. Moreover, if 2 vectors $v_1 \neq v_2$, then $Av_1 \neq Av_2$. Because $Av_1 = Av_2 \Rightarrow (v_1 - v_2) \in N(A)$. But $Rank(A) = k \Rightarrow N(A) = \{0\}$, so this can't be true. So, A is injective. So, A is bijective.

We end by showing that X^*X has full rank k iff X does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Least Squares ... V

Theorem

Let X be $n \times k$, $n \gg k$. Then X^*X is invertible iff Rank(X) = k.

Proof.

 X^*X is invertible iff $Nullity(X^*X) = 0$. Rank(X) = k iff Nullity(X) = 0. So we are done if we show $Nullity(X^*X) = 0$ iff Nullity(X) = 0. We show the stronger result that $N(X^*X) = N(X)$. Indeed, let $b \in N(X)$, so Xb = 0. So $X^*Xb = 0$. So $b \in N(X^*X)$. Conversely, let $b \in N(X^*X)$. So, $X^*Xb = 0$. So, $(X^*Xb, b) = 0$ or $b^*X^*Xb = 0$ or (Xb, Xb) = 0. So, Xb = 0 or $b \in N(X)$.

[SB] (Delhi School of Economics)

イロト 不得下 イヨト イヨト 二日

Identity Property of Adjoint Matrix

Definitions $(Ax, y) = (x, A^*y) \quad \forall x, y \in \mathbb{C}^n$ Proof. Now, to prove the main identity: $(Ax, y) = \underbrace{y^* A}_{x} x = (A^* y)^* x = (x, Ay),$ the first and the last equalities here follow from the definition of inner product in F^n , and the middle one follows from the fact that $(A^*y)^* = y^*(A^*)^* = y^*A$. We also have used here, $(AB)^* = B^*A^*$.

Fact

Let us note that the adjoint operator is unique: if a matrix B satisfies $(Ax, y) = (x, By) \forall x, y$ then $B = A^*$. Indeed, by the definition of A^* we get $(x, A^*y) = (x, By) \forall x$ and therefore by [Corollary 1.5 Treil 118] $A^*y = By$. Since it is true for all y, 158] (Delhi School of Economics) Introductory Math Econ

Relation between Range and Null Spaces Of A and A*

Consider an LT $A: V \rightarrow W$

Theorem

 $RanA^* = (NullA)^{\perp}.$

Proof.

NullA = $\{z | Az = 0\}$. Az = 0 iff $z^*A^* = 0^*$ (taking conjugate transpose). That is, iff $z^*a_i = 0^*$, or $a_i^*z = 0$, \forall columns a_i of A^* . That is, iff $z \perp a_i$ for all columns a_i of A^* , iff $z \perp RanA^*$. So, NullA = $\{z | z \perp RanA^*\}$. (In the real matrix case, just think of N(A) as all vectors z orthogonal to the rows of A and hence to the columns of A^T and hence to $R(A^T)$). So, NullA = $(RanA^*)^{\perp}$. Taking orthogonal complements on both sides, $(NullA)^{\perp} = RanA^*$.

As a corollary, interchanging A and A^* , we get $(NullA^*)^{\perp} = RanA$.

[SB] (Delhi School of Economics)

Introductory Math Econ

Relation between Range and Null of A contd...

```
Consider an LT A: V \to W
```

Theorem

 $NullA^* = (RanA)^{\perp}$.

Proof.

Let $w \in W$. Then $w \in null(A^*) \Leftrightarrow A^*w = 0$ Now, $(v, A^*w) = 0$ for all $v \in V$ which is orth. comp. to N(A*) $\Leftrightarrow (Av, w) = 0$ for all $v \in V$ (by Indentity property of Adjoint) $\Leftrightarrow w \in (RanA)^{\perp}$. Thus $NullA^* = (RanA)^{\perp}$

Note: If we take the orthogonal complement of both sides of the previous result, we then get $RanA = (Null(A^*))^{\perp}$.

イロト 人間ト イヨト イヨト

A as a Composition

w.r.t. Fundamental Subspaces

Definition

A LT $T: V \rightarrow W$ is an **isomorphism** if it is invertible.

If such an isomorphism (a LT from V to W) exists, it can be shown that V and W have the same dimension (say n). Looking at things in terms of some bases, they are both practically like \Re^n . For example if $\{v_1, ..., v_n\}$ is a basis in V, a vector $x \in V$ is expressed as the unique LC $x = \sum x_i v_i$. So the scalars $(x_1, ..., x_n)$ express x w.r.t. this basis, and this is exactly like looking at a vector in \Re^n . Similarly for vectors in W. The point is, V and W are practically like the same space with different names. Now turn to a matrix A. Say $A: V \to W$. From the result on the fundamental subspaces, we can decompose the action $v \mapsto Av$ in two: First, v is carried to $P_{N(A)^{\perp}}v$ in $N(A)^{\perp}$ or $R(A^*)$. Then, the linear transformation A restricted to the domain $R(A^*)$, i.e. $A|_{R(A^*)}$, carries

• • • • • • • • • • • • • •

Fundamental Subspaces

A as a Composition

 $P_{N(A)^{\perp}}v$ to Av in R(A). In other words, A is a composition of 2 LTs. Indeed, $A|_{R(A^*)}$ is an isomorphism between $R(A^*)$ and R(A), (and can be represented by an $r \times r$ submatrix of A, where $r = Rank(A) = Rank(A^*)$). We have the

Theorem

A is a composition of two LTs: $A = A|_{R(A^*)}P_{R(A^*)}$.

Proof.

Since $V = N(A)^{\perp} \oplus N(A) = R(A^*) \oplus N(A)$, for any $v \in V$ we have the unique orthogonal decomposition $v = v_1 + v_2$, where $v_1 = P_{R(A^*)}v \in R(A^*)$ and $v_2 \in N(A)$. So, $Av = A(v_1 + v_2) = Av_1$. And Av_1 is just equal to $AP_{R(A^*)}v$. So for all $v \in V$, we have $Av = AP_{R(A^*)}v$.

We end by showing that $A|_{R(A^*)}$ is an isomorphism from $R(A^*)$ to $R(A)_{j_{A}}$

Fundamental Subspaces of A

Theorem

 $A|_{R(A^*)}: R(A^*) \rightarrow R(A)$ is an isomorphism.

Proof.

A is a LT. It remains to show that it (restricted to the domain above) is a bijection.

(i) Let $v, v' \in R(A^*)$ and Av = Av'. So $(v - v') \in N(A)$, and so v = v' + (v - v') is the unique decomposition of v w.r.t. $N(A)^{\perp} \oplus N(A)$. However, since $v \in N(A)^{\perp}$, its (unique) decomposition on $N(A)^{\perp} \oplus N(A)$ must be v = v + 0. so, v' = v, and $A|_{R(A^*)}$ is injective. (ii) Let $w \in R(A)$. So w = Av for some $v \in V$. Since v has a unique decomposition $v = v_1 + v_2$ where $v_1 \in N(A)^{\perp} \equiv R(A^*)$ and $v_2 \in N(A)$, $Av = Av_1$, so w has a preimage $v_1 \in R(A^*)$. So, $A_{R(A^*)}$ is surjective as well.

・ 何 ト ・ ヨ ト ・ ヨ ト