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The Economic Importance of Tail Events

From time to time, something occurs that is outside the range of what is normally expected.
For reasons that will soon become clear, I call this a tail event. Some tail events are unremark-
able, such as an e-mail about a large inheritance that awaits you in Nigeria. Others may change
the course of history. Momentous tail events include the detonation of the first atomic
weapon over Hiroshima in 1945, the sharp rise in oil prices in 1973, the 23 percent fall
in stock prices in October 19, 1987, the destruction of the World Trade Center towers in
2001, and the meltdown of the world financial system in 2007–2008. A tail event is an out-
come, which, from the perspective of the frequency of historical events or perhaps only from
intuition, should happen only once in a thousand or million or centillion years.
Tail events are more than statistical curiosities. In some cases, they may be so important that

they dominate the way we think about our options and our strategies. Obviously, tail events
dominate thinking about nuclear weapons. Less obvious is how to deal with tail events in eco-
nomics. One example of how tail risk has changed economic policy is in the area of finance. In
response to the meltdown of the banking system in 2007–2008, the theoretical approach to
bank regulation has moved toward containing ‘‘systemic risk’’ rather than individual bank risk.
Is there a general theory of economic policy concerning tail events? In an important paper,

Weitzman (2009) has proposed what he calls a dismal theorem. He summarizes the theorem
as follows: ‘‘[T]he catastrophe-insurance aspect of such a fat-tailed unlimited-exposure sit-
uation, which can never be fully learned away, can dominate the social-discounting aspect, the
pure-risk aspect, and the consumption-smoothing aspect.’’1 The general idea is that under
limited conditions concerning the structure of uncertainty and societal preferences, the
expected loss from certain risks such as climate change is infinite and that standard economic
analysis cannot be applied.
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Weitzman discusses many implications of the dismal theorem, but one of the most striking
is its destructive effect on benefit–cost analysis, particularly for climate change. ‘‘The burden
of proof in climate-change CBA [benefit–cost analysis] is presumptively upon whoever cal-
culates expected discounted utilities without considering that structural uncertainty might
matter more than discounting or pure risk. Such amiddle-of-the distributionmodeler should
be prepared to explain why the bad fat tail of the posterior-predictive PDF does not play
a significant role in climate-change CBAwhen it is combined with a specification that assigns
high disutility to high temperatures.’’
These points potentially have significant implications for both economic analyses of cli-

mate change and policy in general. However, because the assumptions underlying the dismal
theorem are very restrictive, it is important to examine carefully whether standard tools of
economic analysis, such as benefit–cost analysis and expected utility theory, can be usefully
employed in areas exhibiting great uncertainty, such as climate change. The purpose of this
article, which is part of a symposium on Fat Tails and the Economics of Climate Change, is
to put the dismal theorem in context and to analyze its applicability with respect to climate
change.2

The article is organized as follows. I begin with a discussion of the statistical phenomenon
known as fat tails, which occurs when there are occasionally extremely large deviations from
the normal range of variations in a variable such as stock price changes or earthquake size. If
people are accustomed to a normal level of background variability, they may be very sur-
prised, and sometimes badly hurt, by these tail events. Next, I explain some key statistical
concepts that provide a foundation for examining the dismal theorem. I then explore the
implications of fat tails for the evaluation of economic outcomes, focusing in particular
on Weitzman�s proposed dismal theorem, which argues that standard benefit–cost analysis
cannot be performed when the distribution of outcomes has fat tails and our preferences
show strong aversion to risk.
This is followed by a detailed examination of the scope and applicability of the dismal

theorem. I begin by putting Weitzman�s analysis in the context of the earlier literature on
catastrophic environmental outcomes. Next, I discuss an example used by Weitzman in
his examination of the economics of climate change: the uncertainty, the potential fat tails,
and the catastrophic declines in consumption related to the temperature response to in-
creased accumulations of greenhouse gases. I suggest that one of the issues is unbounded
disutility (i.e., utility going to minus infinity) in the tails, and I consider whether the assump-
tion of unbounded utility is consistent with attitudes about other potentially catastrophic
events.
I conclude that tail events are indeed important phenomena that require careful analysis

and attention. At the same time, I find that there is no universal rule that can be applied to
determine when benefit–cost analysis should or should not be applied. Rather, the applica-
bility of standard economic tools, such as benefit–cost and expected utility analysis, will de-
pend upon the uncertainty surrounding specific issues and phenomena, as well as attitudes
toward risk.

2The other articles in this symposium are Weitzman (2011) and Pindyck (2011).
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The Problem of Fat Tails

The analysis underlying the dismal theorem relies on the idea that low-probability, high-con-
sequence events can dominate the impacts and societal concerns for many issues, of which
climate change is a signal example. This is the phenomenon known as ‘‘fat tails.’’
To illustrate the problem of fat tails, it is helpful to first picture a probability distribution

such as the common bell curve or normal distribution. The normal distribution has most
observations clustering around the center, with few showing highly divergent results. Take the
height of American women as an example. This variable has close to a normal distribution,
with a mean of sixty-four inches and a standard deviation of three inches. Based on the prop-
erties of a normal distribution, 95 percent of American women will be between 58 and 70
inches tall. How likely is it that you will observe an eleven-foot-tall woman? This is about
twenty-three standard deviations from the mean, which is an exceedingly small number for
a normal distribution (about 10�230). Indeed, the world�s tallest woman is reported to be
about eight feet tall.
Other probability distributions have the property that from time to time a very unlikely

looking event occurs. When this is the case, we say that we have witnessed a ‘‘tail event’’ and
that the tail of the distribution is ‘‘fat’’ rather than medium as in the case of the bell curve.

Multi-Sigma Events

People sometimes refer to ‘‘four-sigma’’ or ‘‘six-sigma’’ events. These are shorthand terms for
how many standard deviations from the average something is. Returning to women�s height,
if you see a woman who is six feet tall, that is a three-sigma event. In a normal distribution,
a three-sigma positive shock (or an observation three standard deviations above the mean)
will occur about once every two hundred observations. So, this suggests that only one in two
hundred women will be taller than six feet.
Quite a different case is illustrated by daily changes in stock prices. Prices on U.S. stock

markets fell approximately 23 percent on October 19, 1987. An estimate of the daily standard
deviation of price change over the 1950–1986 period shows a standard deviation of 1 percent.
If stock price changes follow a normal distribution, then we would see a 5 percent change in
prices once every 14,000 years and a 7.2-sigma change about once in the life of the universe.
However, twenty-three-sigma events, like eleven-foot people, simply do not occur for
a normal distribution.
Yet, these large deviations occur much more frequently than would be predicted by the

normal distribution. Let�s look at the long-term history of price changes in the U.S. stock
market. I have calculated the monthly returns for stock prices for the 140-year period from
1871 to 2010. Table 1 illustrates the phenomenon of fat tails for the stock market, whereby the
actual maximum and minimum increases over this 140-year period are much larger than
would be predicted by a normal distribution. In fact, the maximum is a ‘‘ten-sigma event,’’
which would almost never happen with a normal distribution (probability less than once in
the life of the universe). So, people who think that financial markets follow the bell curve will,
from time to time, be very surprised.
It has been known for many years that there are large deviations from the normal or bell

curve distribution for the stock market as well as for many other phenomena. Statisticians
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have developed both probability distributions that have fat tails and techniques to estimate
these other distributions. A particularly interesting probability distribution that may have fat
tails is one that is known as the ‘‘power law.’’3 This refers to a distribution in which the prob-
ability is proportional to a value to a power or an exponent. One example of this is the power
law for earthquakes, which I will return to later. Other examples include the sizes of cities and
firms, solar flares, moon craters, wars, incomes, wealth, and commodity prices.

The Element of Surprise

One way to think about tail events is to note that you can be extremely surprised by an out-
come when a process has fat tails. This ‘‘surprise’’ can be measured by asking how deviant of
an observation might turn up when you have many observations. For example, suppose that
you have looked at housing prices for fifty years and observe that they have never declined. So,
you place your bets on housing prices continuing to rise. But then you get a draw from a fat-
tailed distribution and housing prices fall—not just a little, but 20 or 40 percent. This is what
happened in the U.S. housing market after 2006.
Now, suppose you were in the oil market in the early 1970s. Suppose further you were

a trader who eschewed any economic theories and just looked at historical data (which is
not an absurd approach given the unpredictability of oil prices). Oil prices had been pretty
stable, and the ‘‘sigma’’ was about 5 percent on a monthly basis. But then, in 1973, we had, by
historical standards, a thirty-seven-sigma event (see Figure 1, which shows the high-sigma
stock market and oil price surprises events on a monthly basis). No wonder many people
thought the economic world as we knew it was coming to an end in 1973. If we could have
a thirty-seven-sigma event, then we can rule out almost nothing (except phenomena incon-
sistent with the laws of nature).
Enter fat-tailed distributions.
There has been much historical and statistical research on ‘‘surprises’’—or fat tails—over

many years. The conclusion of this research—on oil prices, stock prices, earthquake size,
war fatalities, and many other phenomena—is that we have been surprised for the wrong rea-
sons.Wehaveoftenobservedmuch largerdeviations fromthenormthanwouldbepredictedby
standard statistical analysis. Take the example of the events depicted in Figure 1.Wemight have
thought that the ‘‘spikes’’ in Figure 1were near-zero-probability events, andperhaps never even

Table 1 Comparison of normal and actual distribution of stock price changes, 1871–2010

Largest increase in 140 years

Actual 40.7

Normal distribution 14.3

Largest decrease in 140 years

Actual -30.8

Normal distribution -13.7

Notes: I looked at 140 years of stock price changes measured in percent per month. I then took a normal distribution with the same

mean and standard deviation as the actual data. Increases are logarithmic.

Source: Calculations based on data from Shiller (http://www.econ.yale.edu/;shiller/) and DRI database (derived from CD-ROM

from Yale Library).

3Power law distributions were introduced into economics by Mandelbrot (1963) and are widely used in the
natural and social sciences.
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contemplated that such tremendous changes in stock or oil prices could occur. But it turns out
that our implicit, standard statistical reasoning was wrong. Thus, we were ‘‘surprised’’ because
rather than the distributions being normal, they had fat tails. Thismeans that the probability of
the ‘‘way-out’’ events occurring was much greater than predicted by the normal distribution.

How Can We Know Which Distributions Are Fat Tailed?

This research solved one problem but raised another. The new problem is, which are the fat-
tailed distributions and which are the thin-tailed ones? When should we be on the lookout for
high-sigmaevents?And,howcanweanswer thesequestionsbefore thehigh-sigmaeventoccurs?
The basic proposition underlying the dismal theorem is that with ‘‘fat-tailed’’ distributions,

decision analyses may lead to very unintuitive results. This arises because distributions with
fat tails are ones for which the probabilities of rare events decline relatively slowly as the event
moves far away from its central tendency. This means that it can be hard to detect fat-tailed
distributions and very hard to know how fat the tails are.
I have already mentioned the fat-tailed probability distribution associated with the power

law. This is known in statistics as the Pareto distribution, after the Italian economist Vilfredo
Pareto (who also introduced the important concept of a Pareto optimum). The important
point about this distribution is that the probability of high-sigma events declines slowly rel-
ative to distributions like the normal. After a slight statistical detour, I will provide some
examples of the power law distribution.

Figure 1 Surprise index for oil prices and stock prices, 1960–2007.

Notes: The ‘‘surprise index’’ is measured as a three-month change in the logarithm of the price divided by

a twenty-year moving average volatility, where each is measured monthly. The circles show the periods when

the surprise was more than five moving standard deviations, with open circles for oil prices and solid circles for

stock prices.

Source: Nordhaus (2007b).
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Key Statistical Concepts

I pause here briefly to explain some key concepts for understanding fat tails and the dismal the-
orem. The dismal theorem depends uponwhat mathematicians call limiting behavior. In par-
ticular,weneed toconsiderwhathappens to theexpectedutilityofoutcomesundercatastrophic
conditions. The standard economic approach, used here and by Weitzman, assumes that cat-
astrophic outcomes are ones inwhich ‘‘consumption’’declines sharply, perhaps to zero or some
minimum level. For example, most people think that the Great Depression was a catastrophic
economic event; consumption in the United States fell by about 20 percent during this period.

The Utility of Consumption

I first consider the utility of consumption, U(C). Like Weitzman and most everyone else,
I assume that people are risk averse. This means that the marginal utility of consumption,
MU(C), rises as C declines. Next, I consider the probability that a particular level of
consumption will occur as P(C). Viewed in these terms, the dismal theorem is really about
what happens as C gets indefinitely small or perhaps approaches some minimum subsistence
level. Take the product of the probability of a particular outcome times its marginal utility,
which is P(C)�MU(C). The question is whether P declines more rapidly thanMU increases
as C goes toward the catastrophic minimum. In Weitzman�s dismal theorem, because of
the fat tails, P declines slowly for low values of C; and, because of strong risk aversion,
MU increases sharply for low values of C. As a result, P(C) � MU(C) increases sharply
as C declines, and the expected marginal utility tends to minus infinity as C goes to zero.
Note that the dismal theorem relies on two conditions as C declines: P must not go to zero

and MU must be indefinitely large as C declines. If either of these conditions fails, then the
dismal theorem fails, andwe are back to standard economics and standard benefit–cost analysis.

Definitions of Fat Tails

There is no generally accepted definition of the term ‘‘fat tails,’’ which is also sometimes called
‘‘heavy tails.’’ One set of definitions (Schuster 1984) divides distributions into three classes.
A thin-tailed distribution has a finite upper limit (such as the uniform distribution),
a medium-tailed distribution has exponentially declining tails (such as the normal distribu-
tion), and a fat-tailed distribution has power law tails (such as the Pareto distribution).4

To further illustrate these distinctions, it is helpful to go a step further and present the
mathematics. To make the exposition simpler, I use a specification that is slightly different
from Weitzman�s. Begin with the Pareto distribution, where the probability of an event is
P ¼ k1X

- (1þa), where a is the Pareto ‘‘shape parameter,’’ which reflects the importance of
tail events; X, the variable of interest; and k1, a constant that ensures that the sum of prob-
abilities is 1.5 If a is very small, then the tail is very fat and the variable has a highly dispersed
distribution. As a gets larger, the tail looks more like a normal distribution.

4This definition is proposed in Schuster (1984). Weitzman uses a slightly different definition, but the
difference is not essential to the discussion here.
5Note that when we examine consumption, we look at X ¼ 1/C. We do this because we are interested in the
lower tail of C (i.e., declines in consumption). However, when we examine something such as earthquakes,
high is bad. Also, this equation might hold only in the tail, as in the case of earthquakes.
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Figure 2 shows an example for a normal distribution and a Pareto distribution with a slope
parameter of a ¼ 1.5. The curves show the probability that an event will be at least N sigma,
where sigma is a measure of dispersion. Note that the probability of a surprise is very small for
normal distributions once a four- or five-sigma threshold is reached. For this version of the
Pareto distribution, which is found for many economic and physical variables, the four-sigma
probability is still substantial.

Risk Aversion

Any analysis of the implications of uncertainty and fat tails must take into account attitudes
toward risk, or what is technically known as risk aversion. The notion of risk aversion is
employed in many fields of decision sciences. It basically says that we will pay to avoid risk.
A useful concept is the rate of relative risk aversion, which can be illustrated using finance. If
we are risk averse, then we may hold some low-risk securities even though they have a lower
return than a high-risk security. For example, we might hold a portfolio with half in bonds
and half in stocks, even though the bonds yield only 2 percent, while the stocks on average
yield 6 percent. If we have constant relative risk aversion, we will continue to hold the same
share of stocks and bonds as we become richer (or more recently, poorer).
It is common in economic studies to assume a constant rate of relative risk aversion (CRRA),

andthisassumptionunderliesWeitzman�sworkonthedismal theorem.ACRRAutility function
is one in which the marginal utility of consumption rises proportionally with the fall in
consumption. As it turns out, both the Pareto distribution and the CRRA utility function
have the same algebraic structure. TheCRRAutility function has the formU¼ k2C

(1 - b), where

Figure 2 Illustration of tails for a normal distribution and a Pareto distribution with scale parameter a¼ 1.5.

Notes: Each curve shows the probability that the variable will be greater than the sigma shown on the

horizontal axis.
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the parameter b > 0 is the CRRA and k2 an inessential constant. Thus, b ¼ 0 implies risk
neutrality; the higher the value of b, the higher the degree of risk aversion.
This concludes the statistical interlude.

Implications of the Dismal Theorem

I now consider the implications of Weitzman�s dismal theorem. The basic implication is
straightforward: in the presence of both fat-tailed uncertain outcomes and strong risk aver-
sion, we cannot rely upon our standard tools of expected utility analysis. The reason is that the
probability of extreme and catastrophic events does not decline sufficiently rapidly to com-
pensate for our aversion to encountering these catastrophic events.
More precisely, using the mathematical terms presented in the previous section, the dismal

theorem depends upon the values of the fatness of the tail (a) and the rate of relative risk
aversion (b). If we assume that the probability distribution is Pareto and the utility function is
CRRA, then the dismal theorem holds when b> aþ 1. This means that our standard tools of
economic analysis are in deep trouble either when risk aversion is very high or when the tail is
especially fat.
This leads to a simplified dismal theorem:when risk aversion (large b) is very high or the tails

are very fat (small a), so that b > a þ 1, our standard tools of expected utility analysis break
down because expected marginal utility is negative infinity.
Weitzman motivates his dismal theorem using an advanced technique from decision

sciences known as Bayesian learning. However, the intuition is fairly straightforward. Suppose
that some important parameter is unknown.Weitzman uses an example from climate science,
the temperature sensitivity coefficient (TSC).6 The TSC is defined as the equilibrium increase
in global mean surface temperature caused by a doubling of atmospheric concentrations of
CO2. He assumes that there is some genuine uncertainty about the TSC perhaps because of
geophysical nonlinearities. This means that the ‘‘true’’ TSC is a parameter, call it K, but it has
some true imprecision or variability, call it S.
Perhaps the true TSC follows the normal distribution shown in Figure 2. We cannot learn

the true K and S, however, because the historical record on temperature and CO2 increases is
too limited, and because we cannot wait for thousands of years for the true climate parameter
to be revealed. So, we might need to rely on a small sample of observations, say from a his-
torical period. Because we must rely on a limited sample, we cannot even reliably estimate the
degree of imprecision of the important parameter, K. Thus, with small samples, we have only
a rough idea about the TSC and its imprecision. We can get a better idea with a larger sample,
but as long as the number of observations is finite, we can never reduce the estimated var-
iability as low as S.
This point about the difficulty of determining the imprecision of our statistical estimates is

generally not terribly important because if the distribution is thin tailed or medium tailed,
such as the normal distribution, the imprecision will have limited impact on our decisions.
However, if the distribution can extend far to the right (as for large earthquakes) or far to

6I defer a detailed discussion of the TSC to a later section and make a more general point here.
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the left (as for very low levels of consumption), then the degree of imprecision may be an
important factor in our decisions.
Weitzman makes a second point concerning the TSC, but this one is less general and

depends upon his exact assumptions. He notes that if the true distribution of the TSC
is normal, then the estimated distribution (known as the t distribution) has a fat-tailed dis-
tribution. However, this point depends on the number of observations. If the number of
observations is very small, then the distribution is very fat, but as the number of observations
gets large, the distribution begins to resemble the medium-tailed normal distribution. Thus,
whether the estimated distribution has a fat or a thin tail depends on the number of obser-
vations in our sample. This means that the dismal theorem does not hold in all circumstances.
However, it is general enough to make us pause to consider its implications before moving on
to analyze its applicability.
So, to summarize the findings here concerning when the simplified dismal theorem would

apply in practice: it requires some combination of extreme risk aversion and very fat tails.
When either of these conditions holds, we can find ourselves in a situation where the tails of
the distribution tend to drive our evaluations and policy analyses.

Earthquakes as an Example

Let�s take the example of earthquakes. Seismologists have determined that the size of earth-
quakes tends to follow a power law distribution, known as the Gutenberg–Richter law. Most
estimates indicate that the energy (i.e., magnitude) of earthquakes has a Pareto parameter
of about a ¼ 1. Figure 3 illustrates the power law for earthquakes based on data from
the U.S. Geological Survey on the largest recorded earthquakes, but this is a typical result
(see Christensen et al. 2002 as an example). The variable on the horizontal axis shows
the logarithm of the size of the earthquake, where size is measured as energy, while the vertical
axis shows the logarithm of the fraction of earthquakes that were at least as large as the
number shown on the horizontal axis. This figure is similar to Figure 2 and indicates
how fat the tail of the distribution is.
Figure 3 offers a clear example of a fat-tailed distribution. It shows that the probability of

a powerful earthquake declines very slowly for more and more powerful earthquakes. To
further illustrate, suppose we thought that the energy of earthquakes in Japan was normally
distributed. Then, using the past two hundred years of data, we would calculate that an earth-
quake as large as the March 2011 quake would occur every 10�13 years (more or less). But if
we were to use the Pareto distribution shown in Figure 3, we would find that an earthquake of
that size or larger will occur every one hundred years or so.
It is useful to examine the case of earthquakes in the context of the dismal theorem because

this is an area where the economics is quite intuitive. Suppose that the costs—or damages—of
an earthquake are proportional to its size (energy). Such a situation could arise because of
structural damage, or because of the size and power of a tsunami. In this case, the costs will
also have a fat-tailed distribution, as in Figure 3. This means that the surprises that accompany
the distribution of the earthquake�s size will be accompanied by similar surprises about its
damage.
Because of the fat-tailed nature of earthquakes, there is likely to be a big element of surprise

when outliers occur, as vividly illustrated by the March 2011 earthquake and tsunami in Japan.
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The estimatedmagnitude of this earthquake was 9.0, whichmeans that only four earthquakes in
world record history have exceeded it. The largest prior earthquake in Japan had a recorded
magnitude of 8.5. This also implies that the energy of the 2011 earthquake was six times as
powerful as the largest Japanese earthquake ever measured. This is the power law with a ven-
geance and explains in part why the earthquake was so devastating and surprising.
We can also apply our surprise theory here. If earthquake and tsunami magnitudes were

normally distributed, then an unusually large earthquake would be only slight larger than
historical experience. However, with fat-tailed distributions, outliers can be much larger than
historical experience (as in Figure 1)—in fact, six times larger in the case of the 2011 Japanese
earthquake. If you thought earthquakes had a normal distribution, such a tail event would be
equivalent to observing a twenty-foot-tall woman striding down the street.

Does the Dismal Theorem Apply as a General Rule?

I turn next to the question of whether the dismal theory applies as a general rule by analyzing
the conditions under which tail events dominate the outcomes and may therefore undermine
standard policy analysis. Weitzman focuses on the case of climate change, and this is where
I will concentrate my analysis. But the analysis would apply to a wide variety of other issues
and events that have the same logical structure, such as earthquakes, nuclear accidents, oil
spills, bank failures, and asteroid hits.

Figure 3 The power law distribution for earthquakes.

Notes: The horizontal axis is the logarithm to the base 10 of the earthquake magnitude (measured as energy).

The vertical axis indicates the logarithm of the fraction of earthquakes that were at least as large as the

earthquake energy shown on the horizontal axis. The slope of the power law distribution is the Pareto slope.

Estimates place the Pareto parameter at a � 1 at the upper tail.

Source: Calculations based on historical data from the U.S. Geological Survey at http://earthquake.usgs.gov/

earthquakes/world/historical_mag_big.php.
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The applicability of the dismal theorem depends upon some very restrictive assumptions.
First, it is necessary that the probability distribution of consumption has a sufficiently fat tail
so that tail events become quantitatively important. Second, it is necessary that risk aversion
be sufficiently powerful that these tail events have a significant impact on the overall utility.
And under both of these assumptions, the distributionmust go to the limit of catastrophe and
not have a finite bound or upper or lower limit. I begin by putting the dismal theorem in
context by comparing Weitzman�s analysis with some earlier studies of catastrophic out-
comes. I then examine the extent of the dismal theorem�s relevance.

Early Studies of Catastrophic Outcomes

The analysis of catastrophic (or at least very serious) environmental outcomes has a long
history. One of the early influential approaches was Ciriacy-Wantrup�s (1952) theory of a ‘‘safe
minimum standard,’’ or a level of an ecosystem or pollution beyond which the outcome
would be catastrophic. This theory has led to the precautionary principle.
Cropper (1976) presented a rigorous treatment of the issue, dealing specifically with the

optimal pollution or resource use in the presence of a catastrophic threshold. Cropper�s anal-
ysis differs from theWeitzman analysis in twomajor respects. First, Cropper�s study examines
the optimal policy and is therefore a true benefit–cost analysis, whereas there are no policies
embedded in the Weitzman analysis. Second, Cropper assumes that utility is never infinitely
negative; so, in contrast to theWeitzman analysis, the case of infinitely large disutility does not
arise. In Cropper�s analysis, while there may be catastrophic outcomes, the problem is well
defined and we can use standard economic tools to identify the optimal policy.
An important study by Kolstad (1996) analyzed the interaction of uncertainty and learning

in the context of global warming. Kolstad�s concern was how the optimal policy is affected by
the irreversibility of policy as well as the potential for learning about future damages. Using
a parameterized model of global warming rather than a theoretical model, Kolstad found that
the average damages are more important than the uncertainty about damages; more specif-
ically, in his results, the uncertainty about damages is second order relative to the first-order
mean damages. Additionally, he found that the prospect of learning would reduce the optimal
control rate relative to the deterministic case. Note that Kolstad�s analysis assumes that
damages are never catastrophic. Moreover, like Cropper, the utility function in Kolstad�s anal-
ysis shows only modest risk aversion (with a rate of relative risk aversion of one). The Cropper
and Kolstad studies indicate that the presence of uncertainty and very large damages is not
sufficient per se to undermine standard economic analysis.
Studies by the present author have also examined the implications of learning and uncertainty

in the context of global warming. The most recent comprehensive study (Nordhaus 2007a)
was an aggregative model of global warming and the economy, known as the DICE-2007
model. This study examined the implications of uncertainty about eight major variables on the
optimal climate change policy and other variables. The major finding of the uncertainty analysis
was consistent withKolstad�s findings. I found that the best-guess or certainty-equivalent policy is
agoodapproximationfor thepolicy inwhichafullexpectedutility frameworkisused.Thereappear
to be no empirical grounds in theDICEmodel for paying amajor risk premium for future uncer-
tainties beyond what would be justified by the averages (Nordhaus 2007a). Thus, as in the earlier
studiesdiscussedabove,theassumptionsunderlyingtheDICEmodeldiffersignificantlyfromthose
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in the Weitzman analysis. More specifically, they do not include a fat-tailed distribution of out-
comes, they include policy, and consumption is not catastrophically affected by climate change.

The Absence of Policy in the Dismal Theorem

One of the major points in the dismal theorem is that doing standard economic benefit–cost
analysis is not possible. Weitzman (2009) argues that ‘‘the policy relevance of any CBA [ben-
efit-cost analysis] coming out of such a thin-tail-based model might then remain under a very
dark cloud until this fat-tail issue is addressed seriously and resolved empirically.’’ In fact,
however, there is no benefit–cost analysis in the analysis underlying the dismal theorem,
and indeed, there are no policies. How then might we extend the Weitzman (2009) analysis
to address questions of policy?
As in the early studies reviewed above, catastrophic environmental outcomes should be

considered in the context of environmental policies. For example, should we slow greenhouse
gas emissions? Should CO2 concentrations remain below some threshold level? Should we
ensure a minimum stock of bluefin tuna? What is the safe exposure to radioactive wastes?
If we include a policy lever, the analysis becomes quite different from the analysis underlying

Weitzman�s dismal theorem. Supposewe have the samemodel as discussed above (i.e., withCRRA
utility and a power law distribution), but temperature is affected by a policy variable, whichmight
representpollutioncontrol.Wecalculatethecostsandbenefitsofdifferentlevelsofpollutioncontrol.
The benefit–cost optimum occurs where expected utility is maximized with respect to the policy.
The interesting point here is that there is no particular relationship between the impact of

fat tails on expected utility and the impact of fat tails on the optimal policy. For example, it
might well occur that the outcome of an asteroid collision has very fat tails; but if we cannot
prevent collisions, then policy is tail-irrelevant. In other cases, policy might turn a benign
situation into a catastrophic one. For example, suppose some foolish leader decided that
the best policy for addressing a relatively benign environmental issue was to threaten to drop
a nuclear weapon, which could escalate into global conflagration. The point is that when we
introduce policies, the analysis underlying the dismal theorem no longer applies directly.

Parameter Uncertainty and the TSC

One important element in the analysis of tail events is the distribution of the uncertain pa-
rameter. Let�s return to Weitzman�s example of a parameter used in climate change analysis,
the temperature-sensitivity coefficient (TSC). The idea is that consumptionmay be drastically
affected by the extent of climate change, and the extent of climate change depends upon how
sensitive climate is to changes in CO2 and other greenhouse gases. That sensitivity is the TSC.
For our purposes here, we assume that consumption declines are a function of the TSC. If the
TSC is very large, then the consumption decline is also very large. This implies that if we take
strong steps to curb CO2 emissions, then the temperature increase and the consumption
declines will be smaller. I will examine the methods used by Weitzman to estimate the dis-
tribution of the TSC because these methods illustrate the uncertainties and the difficulties of
determining the exact probability distributions of uncertain variables such as the TSC.
Climate models reviewed in the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change (IPCC) found that the central estimate of the TSC was 3.2�C for an
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equilibrium doubling of CO2 concentrations (IPCC 2007). Weitzman�s estimate of the TSC is
different from the IPCC estimate. He relies on a ‘‘generalized climate-sensitivity-like scaling
parameter that includes heat-induced feedbacks on the forcing from the above-mentioned
releases of naturally sequestered GHGs, increased respiration of soil microbes, climate-stressed
forests, and other weakenings of natural carbon sinks.’’ This would refer to a long-run TSC,
perhaps on the scale of many centuries in which the different feedbacks could take place.
Weitzman argues that the precision of the IPCC estimate is extremely uncertain, and so he
examines a number of scientific studies of the distribution of the TSC.7 In describing how
he arrives at his estimate of the TSC, Weitzman states, ‘‘I just naively assume that all 22 studies
have equal credibility and . . . can be simplistically aggregated.’’ His approach is to take the av-
erage of the 95th percentiles of the different distributions and use that as his estimate. Weitzman
concludes that the 95th percentile of the TSC is 10�C and that the 99th percentile is 20�C.
Many people would agree that a 5 percent chance of a 10�C change, or a 1 percent chance of

a 20�C change, would be a very dire prospect for human societies. However, there is a serious
flaw in the technique Weitzman has used to estimate the TSC. This is an important point not
only because it affects the substance of Weitzman�s analysis but also because it shows how
difficult it is to determine the variability or reliability of estimates.
Weitzman�s estimates of the TSC are in the spirit of a meta-analysis of existing statistical

studies of the TSC. The problem with this procedure is that if we have studies with any sta-
tistical independence, it is not appropriate to use the average of the 95th or the 99th percentile
of different studies as the estimate of the percentiles of the underlying distribution. Those
numbers might be reasonable estimates of the 95th or the 99th percentile of the next study but
are not good estimates of the percentiles of the underlying distribution. The appropriate
procedure is to start with the underlying distributions from different studies, then combine
them into a meta-distribution, and finally calculate the percentiles from the combined
distribution. The approach used by Weitzman will be correct only if the studies are drawn
from exactly the same data so that the distributions have a perfect correlation. However, this is
not the case, as an examination of the sources, methods, and distributions makes clear.
A numerical example will help to illustrate this point. Suppose we want to estimate the 95th

percentile of the estimated mean for a random normal variable, Y, for which we have 10,010
independent observations. Assume that Y has a mean of zero and a standard deviation of one. It
just happens that the observations come in two groups, with group A containing the first ten
observations and group B containing the next ten thousand observations. If we take 10,010
random draws of Y, then the expected 95th percentile of the estimated mean for the first group
is 0.699, while the expected 95th percentile for the second group is 0.01956. Following Weitz-
man�s procedure, wewould average these to get an overall standard deviation of 0.359.However,
the correct approachwould be to combine the two samples into a complete sample distribution,
which yields an expected 95th percentile of the estimated mean of 0.01955. Thus, Weitzman�s
procedure will generally provide an estimate of variability that is biased upward.
A final important issue concerning the assumptions implicit in the dismal theorem is that it

assumes that the uncertain parameter has no upper bound. However, if there is an upper

7I have simplified the analysis by omitting the distinction Weitzman makes between a normal TSC and an
augmented TSC. However, this omission does not affect the central argument either in Weitzman (2009) or
here.
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bound, and if consumption only goes to zero in the limit, then the dismal theorem does not
hold. This is because the worst that can happen is that the parameter takes the upper bound,
which means that at worst the expected value of the parameter is equal to the utility of con-
sumption at that upper bound. To address and settle this issue concerning the dismal the-
orem, it would be helpful to establish an upper bound for the TSC. Unfortunately, to date,
little work has been undertaken in this area.

Further Thoughts on the Implications of Catastrophic Declines in Consumption

The dismal theorem requires that the marginal utility of consumption tends to infinity for
near-zero consumption. This requirement has the unattractive and unrealistic implication
that societies would pay unlimited amounts to prevent zero consumption even if its prob-
ability is infinitesimal. For example, assume that there is a very, very tiny probability that
a killer asteroid might hit Earth and that we can deflect that asteroid for a huge expenditure.
The CRRA utility function implies that we would spend virtually all of world income
no matter how small the probability. That is, even if the probability were 10�10, 10�20, or even
10�1,000,000, we would still spend most of our income to avoid these infinitesimally low-
probability outcomes (short of going extinct to prevent extinction).
Analternativewouldbe to assume that near-zero consumption is extremely butnot infinitely

undesirable. This is analogous to assuming in the health literature that the value of avoiding
an individual�s statistical death is finite. To be realistic, societies tolerate a tiny probability of
zero consumption if preventing zero consumption is ruinously expensive. I consider some
possible bounds below.
A final question is, what exactly do we mean by ‘‘zero consumption’’? Weitzman defines

zero consumption as being ‘‘the value of statistical civilization as we know it, or perhaps even
the value of statistical life on Earth (as we know it).’’ Zero consumption is actually an am-
biguous concept. Is zero consumption (1) declining average consumption of a fixed number
of people, (2) high average consumption of a declining number of people, or (3) high average
consumption of thriving civilizations for a statistically declining period? These are very
different descriptions of the end of civilization or of our species.

Valuing ‘‘Zero Consumption’’

How should we think about societal valuation of ‘‘zero consumption?’’ Take the third of the
possible approaches to ‘‘zero consumption’’ above(which implies anend tohumancivilizations
as we know them). This is the number that Weitzman takes to be unboundedly negative.
Do people really decide about catastrophic events by putting infinite disutility on them?

Clearly not. This issue has been contemplated from time to time. It arose about two decades
ago in the context of ‘‘nuclear winter,’’ which was the theory that the detonation of a large
number of nuclear weapons would lower global temperatures so much as to kill off most if
not all of humanity.8 More recently, there has been a spirited debate about ‘‘strangelets’’ and

8One of the most influential early studies was by Turco et al. (1983). This study was generally disregarded after
further studies. However, recent work has done new modeling and found disturbing results (see Mills et al.
2008).
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black holes triggered by heavy-ion collisions in large colliders (see Dar, De Rújula, and Heinz
1999; Jaffea et al. 2000). Strangelets are hypothetical particles that might conceivably be
created in heavy-ion colliders and would turn the earth into a hot lump of strange matter
in the blink of an eye. Most knowledgeable scientists would regard these as catastrophic events
with positive (if very low) probabilities. However, the low probabilities of these catastrophic
outcomes have not induced people to dismantle all but a few nuclear weapons or to stop the
experiments in colliders.
Again, an example will help to clarify this issue. Awell-established catastrophic risk is killer

asteroids. An asteroid such as the one at the K/T (Cretaceous–Tertiary) boundary, which had
a diameter of around ten kilometers, would probably be sufficiently large to destroy human
civilizations. Such asteroids are estimated to have a probability of Earth collision of about
10�8 per year (Chapman and Morrison 1994). If we were to follow the dismal theorem,
we should be devoting an unlimited fraction of our resources to reduce that probability
by even a small amount. Yet, at present, the U.S. government is spending about $4 million
per year to track hazardous asteroids. This program is designed to detect only 90 percent of
large potentially hazardous objects within the next decade.9 This appears to be a pretty relaxed
approach to addressing such catastrophic risks if we are indeed highly risk averse. In this case,
the revealed social utility function does not seem to place a very high premium on preventing
catastrophic outcomes.
To summarize, societies do not appear to behave as if catastrophic outcomes have infinite

disutility. Perhaps the dismal theorem is really a warning against mechanically applying a spe-
cific utility function to situations where consumptionmight be very small. This wouldmake it
as much a story about extrapolating utility functions as it is about shuddering at the prospect
of infinitesimally likely events.

Other Concerns about Catastrophic Events

The dismal theoremholds that we cannot rule out catastrophic impacts of climate change with
100percentcertainty. Ifwebroadenourhorizons,wewouldfindthat theseresultsapply inawide
variety of circumstances in which we are highly uncertain about the technology or societal
impacts of human activities. Areas inwhich experts havewarned about potentially catastrophic
outcomesincludebiotechnology,strangelets, runawaycomputersystems,nuclearproliferation,
rogue weeds and bugs, nanotechnology, emerging tropical diseases, alien invaders, asteroids,
and so on. Like global warming, all these outcomes have deep uncertainty in the sense that
we really cannot be sure about the shape of the probability distribution. Indeed, these outcomes
may have greater uncertainty than global warming because there are fewer well-understood
constants in the biological and technological world than in the geophysical world. Thus, if
we were to accept the dismal theorem, wewould likely drown in a sea of anxiety at the prospect
of the infinity of infinitely bad outcomes.
Weitzman dismisses such pervasive anxieties about these other catastrophic outcomes,

arguing that they are ‘‘extremely unlikely.’’However, other scientists have come toverydifferent
conclusions. One example is Freeman Dyson, who optimistically believes that we are on the
threshold of developing new technologies that can scrub carbon from the atmosphere at

9See NASA (2007).

254 W. D. Nordhaus



low cost (see Dyson 2008). In another example, Ray Kurzweil (2005) argues that we need to
protect ourselves from the ‘‘GNR’’ (genetics, nanotechnology, robotics) revolution but believes
that low-cost and clean energy will be attainable in two or three decades. We clearly need an
economic and a statistical approach that can be generally applied to potentially catastrophic
events.

The Role of Learning

There is an important difference among these many potentially catastrophic outcomes in
terms of the potential for learning (Yohe and Tol 2010). For some catastrophes, we have
no possibility of learning and making midcourse corrections. Edward Teller suggested
that the Trinity test of an atomic bomb in 1945 might generate enough heat to ignite
the atmosphere; this question could only be definitively answered by the test, but by then,
it would be too late to defer the test. Strangelets are also in this category. There is no point
in revising our views about strangelets in themicrosecond after we discover that the calculations
of the physicists were wrong and the Earth and all its life is turning into a small lump of hot
strange matter. No midcourse correction would be possible. Rogue bugs may be in the same
category as strangelets with respect to learning: Once they have escaped, they cannot be
contained in the lab.
Climate change, by contrast, is a situation where we can learn as we go along. Every theory

that allows for a very high climate sensitivity also predicts that we should see a very large
warming now, with a rapid gradient over the next half century (IPCC 2007). This means
that we can learn, and then act when we learn, and perhaps even do some geoengineering
while we learn some more or get our abatement policies or low-carbon technologies in place.
In other words, if the dismal theorem were to apply, it would apply primarily to areas where
we have no reasonable chance of learning and taking midcourse corrections after learning that
things are heading toward a catastrophic outcome.

Conclusions

There is increasing appreciation of the importance of tail events. Weitzman�s dismal theorem
holds that under strict conditions concerning the structure of uncertainty and preferences,
society has an indefinitely large expected loss from high-consequence, low-probability events.
In such situations, standard tools such as expected utility analysis cannot easily be applied.
Thus, the dismal theorem is important because it helps identify when tail events have
significance for our actions.
It must be emphasized, however, that the dismal theorem holds only under very limited

conditions. The theorem requires strong risk aversion, a very fat tail for the uncertain var-
iables, and the inability of society to learn and act in a timely fashion. Moreover, these prop-
erties must extend to indefinitely low consumption and indefinitely high values of the
uncertain parameters.
Even if the dismal theorem does not hold in its strict form, there is still a constructive

finding here. We see that it is very difficult to obtain precise information about the likelihood
of extreme outcomes from observational data when the distributions have fat tails. This
difficulty arises from ignorance about both the exact form of the distribution (e.g., normal,
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Pareto, or exponential) and the exact parameters of the distribution (supposing it to be
Pareto, is the Pareto parameter 1, 1.5, 2, . . .?). Returning to Figure 2, for example, we
can see that a ‘‘four-sigma surprise’’ has a one in twenty-five probability of occurring with
the Pareto distribution, but a near-zero probability with the normal distribution.
Inmany cases, the data speak softly or not at all about the likelihood of extreme events. This

means that reasonable people may have quite different views about the likelihood of extreme
events, such as the catastrophic outcomes of climate change, and that there are no data to
adjudicate such disputes. This humbling thought applies more broadly, however, as there are
indeed deep uncertainties about virtually every issue that humanity faces, and the only way
these uncertainties can be resolved is through continued careful consideration and analysis of
all data and theories.
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