Problem Set 1, Introduction to Game Theory (Part B), Winter Term 2017

1. Consider the infinitely repeated game with discount rate δ , where the strategic form below is the stage game. Show that for sufficiently patient players, it is a subgame perfect Nash equilibrium to play (U, L) in every period. What is the minimum δ that achieves cooperation?

	Player 2		
		L	R
Player 1	U	1,1	-2,5
	D	2,0	0,0

- 2. Consider an infinitely repeated Cournot duopoly game with linear demand function, $Q = \alpha - P$ and constant marginal cost, c > 0. Is it possible to sustain the monopoly outcome (say, each producing half of the monopoly quantity) in SPNE?
- 3. Consider Bertrand's model of duopoly in the case that each firm's unit cost is constant, equal to c. Let π^m(p) = (p c)D(p) for any price p, and assume that π is continuous and is uniquely maximized at the price p^m (the "monopoly price"). Let s be the strategy for the infinitely repeated game that charges p^m in the first period and subsequently as long as both firms continue to charge p^m, and punishes any deviation from p^m by either firm by choosing the price c for k periods, then reverting to p^m. Given any value of δ, for what values of k is the strategy pair (s, s) a subgame perfect equilibrium of the infinitely repeated game?
- 4. Consider the infinitely repeated Prisoner's Dilemma in which the payoffs of the component game are those given in the figure below.

		Player 2		
		С	D	
Player 1	С	<i>x</i> , <i>x</i>	0, <i>x</i> +1	
	D	<i>x</i> +1,0	у, у	

Consider the strategy following tit-for-tat strategy:

$$s_i(h^t) = \begin{matrix} C & \text{if } t = 0 \text{ or } h_j^t = C \\ D & \text{if } t > 0 \text{ and } h_i^t = D \end{matrix}$$

Under which conditions on the parameters x > y > 0, and $0 < \delta < 1$ is the strategy profile (tit-for-tat, tit-for-tat) a subgame perfect equilibrium?