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The Problem of Hypothesis Testing

A statistical hypothesis is an assertion or conjecture about the probability distribution of

one or more random variables.

A test of a statistical hypothesis is a rule or procedure for deciding whether to reject that

assertion.

Suppose we have a sample x = (x1, . . . ,xn) from a density f. We have two hypotheses about

f. On the basis of our sample, one of the hypotheses is accepted and the other is rejected.

The two hypotheses have different status:

– the null hypothesis, H0, is the hypothesis under test. It is the conservative hypothesis,

not to be rejected unless the evidence is clear

– the alternative hypothesis H1 specifies the kind of departure from the null hypothesis

that is of interest to us

A hypothesis is simple if it completely specifies the probability distribution, else it is

composite.

Examples:

– Income ∼ log-normally with known variance but unknown mean. H0 : µ≥ 8, 000 rupees

per month, H1 : µ < 8, 000

– We would like to know whether parents are more likely to have boys than girls. The

probability of a boy child ∼ Bernoulli (p). H0 : p = 1
2 and H1 : p > 1

2
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Statistical tests

Before deciding whether or not to accept H0, we observe a random sample. Denote by S,

the set of all possible sample outcomes.

A test procedure partitions S into two subsets, the acceptance region with values that lead

us to accept H0 and the critical region R , which has values which lead its rejection.

These sets are usually defined in terms of values taken by a test statistic ( the same mean,

the sample variance or functions of these). The critical values of a test statistic are the

bounds of R.

When arriving at a decision based on a sample and a test, we may make two types of errors:

– H0 may be rejected when it is true- a Type I error

– H0 may be accepted when it is false- a Type II error

We use α and β to denote these errors.

The power function is useful in computing these errors and summarizes the properties of a

test. We will define these functions.

We also identify the set of hypothesis testing problems for which there is an optimal test

and characterize these tests.
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The power function

The power function of a test is the probability of rejecting H0 as a function of the

parameter θ ∈Ω. If we are using a test statistic T

π(θ) = Pr(T ∈ R) for θ ∈Ω

Since the power function of a test specifies the probability of rejecting H0 as a function of

the real parameter value, we can evaluate our test by asking how often it leads to mistakes.

What is the power function of an ideal test ? Think of examples when such a test exists.

It is common to specify an upper bound α0 on π(θ) for every value θ ∈Ω0. This bound α0

is the level of significance of the test.

The size of a test, α is the maximum probability, among all values of θ ∈Ω0 of making an

incorrect decision:

α = sup
θ0∈Ω0

π(θ)

Given a level of significance α0, only tests for which α≤ α0 are admissible.
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Example 1: Normal distribution

X ∼N(µ, 100) and we are interested in testing H0 : µ = 80 against H1 : µ > 80.

Let x̄ denote the mean of a sample n = 25 from this distribution and suppose we use the

critical region R = {(x1,x2, . . .x25) : x̄ > 83}.

The power function is

π(µ) = P(X̄ > 83) = P

(
X̄−µ

σ/
√
n
>

83 −µ

2

)
= 1 −Φ(

83 −µ

2
)

The size of this test is the probability of Type 1 error: α = 1 −Φ( 3
2) = .067 = π(80)

What are the values of π(83), and π(86)?

π(80) is given above, π(83) = 0.5, π(86) = 1 −Φ(− 3
2) =Φ( 3

2) = .933

stata: display normal(1.5)

We can sketch the graph of the power function using the command

stata: twoway function 1-normal((83-x)/2), range (70 90)

What is the p-value corresponding to x̄ = 83.41?

This is the smallest level of significance, α0 at which a given hypothesis would be rejected

based on the observed outcome of X?

In this case, Pr(X̄≥ 83.41) = 1 −Φ( 3.41
2 ) = .044.

Can you find a test for which α0 = .05?
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The power graph..example 1
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Example 2 : Uniform distribution

A random sample is taken from a uniform distribution on [0,θ] and we would like to test

H0 : 3≤ θ≤ 4 against H1 : θ < 3 or θ > 4

Our test procedure uses the M.L.E. of θ, Yn = max(X1, . . . ,Xn) and rejects the null hypothesis

whenever Yn lies outside [2.9, 4]. What might be the rationale for this type of test?

The power function for this test is given by

π(θ) = Pr(Yn < 2.9|θ)+Pr(Yn > 4|θ)

– What is the power of the test if θ < 2.9?

– When θ takes values between 2.9 and 4, the probability that any sample value is less

than 2.9 is given by 2.9
θ and therefore Pr(Yn < 2.9|θ) = ( 2.9

θ )n and Pr(Yn > 4|θ) = 0.

Therefore the power function π(θ) = ( 2.9
θ )n

– When θ > 4, π(θ) = ( 2.9
θ )n+ [1 −( 4

θ)
n]
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The power graph..example 2
9.1 Problems of Testing Hypotheses 537

Figure 9.2 The power func-
tion π(θ |δ) in Example 9.1.7.

1 2 43
2.9

5 u

Let T be a test statistic, and suppose that our test will reject the null hypothesis if
T ≥ c, for some constant c. Suppose also that we desire our test to have the level of
significance α0. The power function of our test is π(θ |δ) = Pr(T ≥ c|θ), and we want

sup
θ∈%0

Pr(T ≥ c|θ) ≤ α0. (9.1.9)

It is clear that the power function, and hence the left side of (9.1.9), are nonincreasing
functions of c. Hence, (9.1.9) will be satisfied for large values of c, but not for small
values. If we want the power function to be as large as possible for θ ∈ %1, we
should make c as small as we can while still satisfying (9.1.9). If T has a continuous
distribution, then it is usually simple to find an appropriate c.

Example
9.1.8

Testing Hypotheses about the Mean of a Normal Distribution with Known Variance. In
Example 9.1.5, our test is to reject H0 : µ = µ0 if |Xn − µ0| ≥ c. Since the null hy-
pothesis is simple, the left side of (9.1.9) reduces to the probability (assuming that
µ = µ0) that |Xn − µ0| ≥ c. Since Y = Xn − µ0 has the normal distribution with mean
0 and variance σ 2/n when µ = µ0, we can find a value c that makes the size exactly
α0 for each α0. Figure 9.3 shows the p.d.f. of Y and the size of the test indicated
as the shaded area under the p.d.f. Since the normal p.d.f. is symmetric around the
mean (0 in this case), the two shaded areas must be the same, namely, α0/2. This
means that c must be the 1 − α0/2 quantile of the distribution of Y . This quantile is
c = '−1(1 − α0/2)σn−1/2.

When testing hypotheses about the mean of a normal distribution, it is traditional
to rewrite this test in terms of the statistic

Z = n1/2 Xn − µ0

σ
. (9.1.10)

Then the test rejects H0 if |Z| ≥ '−1(1 − α0/2). !

Figure 9.3 The p.d.f. of
Y = Xn − µ0 given µ = µ0
for Example 9.1.8. The
shaded areas represent the
probability that |Y | ≥ c.
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Example 3: Binomial distribution

The probability of a defective bolts in a shipment is given by a Bernoulli random variable.

We have the following null and alternative hypotheses: H0 : p≤ .02, H1 : p > .02.

Our sample consists of 200 bolts and our test statistic is number of defective items X in the

sample. We want to find a test for which α0 = .05.

Let us now think of how our test statistic X behaves for different values of p. We want to

find X such that α0 ≤ 0.05

Since X ∼ Bin(n,p), the probability of X being greater than any given x is increasing in p,

we can focus on p = .02. If Pr(X > x)≤ .05 for this p, it will be true for all smaller values of p.

It turns out that for p = .02, the probability that the number of defective items is greater

than 7 is .049 ( display 1-binomial(200,7,.02)).

R = {x : x > 7} is therefore the test we choose and its size is 0.049.

In general, for discrete distributions, the size will typically be strictly smaller than α0.

The size of tests which reject for more than 4, 5 and 6 defective pieces are .37. .21 and .11

respectively.
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Example 3: power function

Let’s graph the power function of this test:

twoway function y=1-binomial(200,7,x), range(0 .1) xtitle(p)||function y=1-binomial(200,7,x),

range(0 .02) color(gs12) recast(area) legend(off) ylabel(.049)

(all on one line)

.0
49

y

0 .02 .04 .06 .08 .1
p

Can you mark off the two types of errors for different values of p?

What happens to this power function as we increase or decrease the critical region? (say

R = {x : x > 6} or R = {x : x > 8}.
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Testing simple hypotheses

We have so far focussed on understanding the properties of given tests. What does an optimal

test look like and when does such a test exist?

Suppose that Ω0 and Ω1 each contain a single element:

H0 : θ = θ0 and H1 : θ = θ1

Denote by fi(x) the joint density function or p.f. of the observations in our sample under

Hi:

fi(x) = f(x1|θi)f(x2|θi) . . . f(xn|θi)

For a test δ, type I and type II errors are α(δ) and β(δ) respectively:

α(δ) = Pr( Rejecting H0|θ = θ0) and β(δ) = Pr( Not Rejecting H0|θ = θ1)

By always accepting H0, we achieve α(δ) = 0 but then β(δ) = 1. The converse is true if we

always reject H0.

It turns out that we can find an optimal test which minimizes any linear combination of

α(δ) and β(δ).
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Optimal tests for simple hypotheses

Theorem (Minimizing the linear combination aα(δ)+bβ(δ)):

Let δ∗ denote a test procedure such that the hypothesis H0 is accepted if af0(x) > bf1(x) and H1 is accepted if

af0(x) < bf1(x). Either H0 or H1 may be accepted if af0(x) = bf1(x). Then for any other test procedure δ,

aα(δ∗)+bβ(δ∗)≤ aα(δ)+bβ(δ)

So we reject whenever the likelihood ratio
f1(x)
f0(x)

> ab . If we are minimizing the sum of errors, we

would reject whenever
f1(x)
f0(x)

> 1.

Proof. (for discrete distributions)

aα(δ)+bβ(δ) = a
∑
x∈R

f0(x)+b
∑
x∈Rc

f1(x) = a
∑
x∈R

f0(x)+b

1 −
∑
x∈R

f1(x)

 = b+
∑
x∈R

[af0(x)−bf1(x)]

The desired function aα(δ)+bβ(δ) will be minimized if the critical region includes only those points for

which af0(x)−bf1(x) < 0. We therefore reject when the likelihood ratio exceeds ab .
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Minimizing β(δ), given α0

Suppose we fix a level of significance α0 and want a test procedure that minimizes β(δ)?

The optimal test in this case is obtained by modifying the previous result.

We know that the optimal test which minimizes α(δ)+ kβ(δ) involves rejecting the null

hypothesis whenever
f1(x)

f0(x)
>

1

k

.

If we choose k such that Pr(
f1(x)
f0(x)

> 1
k) = .05 under H0, then the previous result tells us we are

minimizing β. Hence the following result.

The Neyman-Pearson Lemma : Let δ∗ denote a test procedure such that, for some constant k,

the hypothesis H0 is accepted if f0(x) > kf1(x) and H1 is accepted if f0(x) < kf1(x). Either H0 or

H1 may be accepted if f0(x) = kf1(x). If δ is any other test procedure such that α(δ)≤ α(δ∗),
then it follows that β(δ)≥ β(δ∗). Furthermore if α(δ) < α(δ∗) then β(δ) > β(δ∗)

Let us now take an example to show how we find k such that α(δ∗) = .05. This procedure will

then have the minimum possible value of β(δ).
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Neyman Pearson Lemma..example 1

Let X1 . . .Xn be a normal random sample, Xi ∼N(µ, 1).

H0 : θ = 0 and H1 : θ = 1

We want a test procedure δ for which β is minimized given α0 = .05.

f0(x) =
1

(2π)
n
2
e− 1

2

∑
x2
i and f1(x) =

1

(2π)
n
2
e− 1

2

∑
(xi−1)2

so
f1(x)

f0(x)
= en(x̄n− 1

2 ) > k

by the NP Lemma. This condition can be re-written in terms of our sample mean x̄n:

x̄n > k
′ =

1

2
+

1

n
logk

How do we find k′? Pr(X̄n > k′|θ = 0) = Pr(Z > k′
√
n). For α0 = .05, we have k′

√
n = 1.645 or

k′ = 1.645√
n

Under this procedure, Type II error is

β(δ∗) = Pr(X̄n <
1.645
√
n

|θ = 1) = Pr(Z < 1.645 −
√
n)

For n = 9, β(δ∗) = 0.0877 (display normal(1.645-3))

If instead, we want to minimize 2α(δ)+β(δ), we choose k′ = 1
2 + 1

n log 2, our optimal procedure

rejects H0 when x̄n > 0.577. In this case, α(δ0) = 0.0417 (display 1-normal( (.577)*3)) and

β(δ0) = 0.1022 (display normal( (.577-1)*3)) and the minimized value of 2α(δ)+β(δ) is 0.186
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Neyman Pearson Lemma..example 2

Let X1 . . .Xn be a sample from a Bernoulli distribution

H0 : p = 0.2 and H1 : p = 0.4

How do we find a test procedure δ which limits us to an α0 and minimizes β. let y denote values

taken by Y =
∑
Xi

f0(x) = (0.2)y(0.8)n−y and f1(x) = (0.4)y(0.6)n−y

f1(x)

f0(x)
=
(3

4

)n(8

3

)y
The lemma tells us to use a procedure which rejects H0 when the likelihood ratio is greater than

a constant k. This condition can be re-written in terms of our sample mean y >
logk+n log 4

3

log 8
3

= k′.

Now we would like to find k′ such that Pr(Y > k′|p = 0.2) = .05.

We may not however be able to do since Y is discrete. If n = 10, we find that

Pr(Y > 3|p = 0.2) = .121 and Pr(Y > 4|p = 0.2) = .038, (display 1-binomial(10,4,.2)) so we can decide to

set one of these probabilities as the values of α(δ) and use the corresponding values for k′.

Can you calculate β(δ) if δ rejects for y > 4?
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