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Sample spaces and random variables

The outcomes of some experiments inherently take the form of real numbers:

– crop yields with the application of a new type of fertiliser

– students scores on an exam

– miles per litre of an automobile

Other experiments have a sample space that is not inherently a subset of Euclidean space

– Outcomes from a series of coin tosses

– The character of a politician

– The modes of transport taken by a city’s population

– The degree of satisfaction respondents report for a service provider -patients in a

hospital may be asked whether they are very satisfied, satisfied or dissatisfied with the

quality of treatment. Our sample space would consist of arrays of the form

(VS,S,S,DS, ....)

– The caste composition of elected politicians.

– The gender composition of children attending school.

A random variable is a function that assigns a real number to each possible outcome s ∈ S.
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Random variables

Definition (random variable): Given an experiment with sample space S, a random variable is a function

from the sample space S to the real numbers, X : S→ R.

92 Introduction to Probability

version of “a random variable is a variable that takes on random values”, but such
a feeble attempt at a definition fails to say where the randomness come from. Nor
does it help us to derive properties of random variables: we’re familiar with working
with algebraic equations like x2 + y2 = 1, but what are the valid mathematical
operations if x and y are random variables? To make the notion of random variable
precise, we define it as a function mapping the sample space to the real line. (See
the math appendix for review of some concepts about functions.)
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FIGURE 3.1

A random variable maps the sample space into the real line. The r.v. X depicted
here is defined on a sample space with 6 elements, and has possible values 0, 1,
and 4. The randomness comes from choosing a random pebble according to the
probability function P for the sample space.

Definition 3.1.1 (Random variable). Given an experiment with sample space S,
a random variable (r.v.) is a function from the sample space S to the real numbers
R. It is common, but not required, to denote random variables by capital letters.

Thus, a random variable X assigns a numerical value X(s) to each possible outcome
s of the experiment. The randomness comes from the fact that we have a random
experiment (with probabilities described by the probability function P ); the map-
ping itself is deterministic, as illustrated in Figure 3.1. The same r.v. is shown in a
simpler way in the left panel of Figure 3.2, in which we inscribe the values inside
the pebbles.

This definition is abstract but fundamental; one of the most important skills to
develop when studying probability and statistics is the ability to go back and forth
between abstract ideas and concrete examples. Relatedly, it is important to work
on recognizing the essential pattern or structure of a problem and how it connects

The mapping itself is deterministic, the randomness comes from the sample space.

X is a function that takes us from a probability space (S,F,P) to an induced probability

space (R(X),B,PX(A)).

As long as every set A ∈ R(X) is associated with an event in our original sample space S,

PX(A) is just the probability assigned to that event by P

We usually omit the X in PX(A) unless there is ambiguity.
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Random variables..examples

1. Tossing a coin ten times.

The sample space consists of the 210 possible sequences of heads and tails.

There are many different random variables that could be associated with this

experiment: X1 could be the number of heads, X2 the longest run of heads divided by

the longest run of tails, X3 the number of times we get two heads immediately before a

tail, etc...

For s = HTTHHHHTTH, what are the values of these random variables?

2. Choosing a point in a rectangle within a plane

An experiment involves choosing a point s = (x,y) at random from the rectangle

S = {(x,y) : 0≤ x≤ 2, 0≤ y≤ 1/2}

The random variable X could be the x−coordinate of the point and an event is X taking

values in [1, 2]

Another random variable Z would be the distance of the point from the origin,

Z(s) =
√

x2 +y2

Heights, weights, distances, temperature, scores, incomes... In these cases, we can have

X(s) = s since these are already expressed as real numbers.
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Discrete random variables

Random variables can be discrete, continuous or a mixture of these two.

Definition ( discrete random variable) : A random variable X is said to be discrete if there is a finite list

of values a1,a2, . . .an or an infinite list of values a1,a2, . . . such that P(X = aj for some j) = 1. If X is a

discrete r.v., then the finite or countably infinite set of values x such that P(X = x) > 0 is called the support of

X.

Definition ( probability mass function): The probability mass function (PMF) of a discrete r.v. is given

by the function fX(x) = P(X = x). This is positive if x is in the support of X and 0 otherwise.

Note that the event {X = x} is defined as {s ∈ S : X(s) = x} so P(X = x) is meaningful, but P(X) is

not since probabilities are defined for events, not for random variables.

Some probability distributions are so common and useful that they have names and we study

them thoroughly. We now introduce some of these.
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Bernoulli distribution

Definition (Bernoulli distribution) : A random variable X is said to have the Bernoulli distribution with

parameter p if P(X = 1) = p and P(X = 0) = 1−p, where 0 < p < 1. We write this as X ∼ Bern(p)

Any experiment that can result in only a success or failure is called a Bernoulli trial

The parameter p is called the success probability of the Bern(p) distribution.

There is therefore a whole family of Bernoulli distributions and we specify a particular one

when we pin down this parameter.

Definition (Indicator random variable) : The indicator random variable of an event A is the r.v. which

equals 1 A occurs and zero otherwise. The indicator r.v. of event A is denoted by IA. Note that

IA ∼ Bern(P(A))
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Binomial distribution

Definition (Binomial distribution) : Let X be the number of successes in n independent Bernoulli trials

with success probability p. Then X has a Binomial distribution with parameters n and p. We write

X ∼ Bin(n,p)

Definition (Binomial PMF) : If X ∼ Bin(n,p), then the PMF of X is

P(X = k) =

(
n

k

)
pk(1−p)n−k

for k = 0, 1, 2, . . .n and zero otherwise.

Proof: The probability of any specific sequence of k successes and n− k failures is pk(1−p)n−k. There are
(n
k

)
such sequences since we just need to select the position of the successes The above expression is non-negative and

sums to 1 by the binomial theorem, so we have a valid PMF.

Note: If X ∼ Bin(n,p), then n−X ∼ Bin(n,q), where q = 1−p. Also, with n even, Bin(n, 12) is

symmetric around n
2 . Try to prove both these results.
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The hypergeometric distribution

Think of an urn with w white and b black balls. If we draw n balls with replacement, the

number of white balls drawn X ∼ Bin(n, w
w+b).

If we draw without replacement, X follows a hypergeometric distribution, with parameters w,b

and n. We denote this by HGeom(w,b,n).

Definition (Hypergeometric PMF) : If X ∼ HGeom(w,b,n), then the PMF of X is

P(X = k) =

(
w
k

)(
b

n−k

)(
w+b

n

)
for integers 0≤ k≤w and 0≤ n− k≤ b, and zero otherwise.

The number of white balls k can take values from 0 to n, the sum of these is
(
w+b

n

)
so we have a

valid PMF.

Applications: All experiments where there are two types of items in the population, each of

which may or may not be in the sample (double-tagged items: type w or b is the first tag, in and

out of the sample is the second )
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Discrete uniform distribution

Think of a finite, non-empty set C of numbers. Choose one of these numbers at random and call

the chosen number X. Then X ∼ DUnif(C)

Definition (Discrete Uniform PMF) : If X ∼ DUnif(C), then the PMF of X is

P(X = x) =
1

|C|

for x ∈C, and zero otherwise.

For any A⊆C,

P(X ∈A) =
|A|

|C|
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The cumulative distribution function

All random variables can be described completely by their cumulative distribution function

Definition (cumulative distribution function): The cumulative distribution function of a random variable

X is the function FX given by FX(x) = P(X≤ x) for −∞ < x < ∞
The X subscript denotes the r.v. in question and is usually dropped when there is no ambiguity.

If there are a finite number of elements w in A, this probability can be computed as

F(x) =
∑
w≤x

f(w)

In this case, the distribution function will be a step function, jumping at all points x in R(X)

which are assigned positive probability.

Practice: Derive and plot CDFs for the four discrete distributions we have studied so far.
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Properties of the CDF

Any CDF has the following three properties:

1. Increasing: If x1 ≤ x2 then F(x1)≤ F(x2).

( The occurrence of the event {X≤ x1} implies the occurrence of {X≤ x2} so P(X≤ x1)≤ P(X≤ x2))

2. Right continuous: F(a) = limx→a+ F(x)

For continuous r.v.s it will be continuous throughout, for discrete r.v.s it will jump at all points with

positive probability.

3. Convergence to 0 and 1 in the limits: limx→−∞ F(x) = 0 and limx→∞ F(x) = 1

( {x : x≤∞} is the entire sample space and {x : x≤−∞} is the null set. )

An advantage of a distribution function is that it is defined in the same way for all types of

random variables and also has an empirical counterpart.

Definition (Empirical distribution function): Let X1,X2, . . .Xn be i.i.d random variables with CDF F.

The empirical CDF of X1,X2, . . .Xn is defined as F̂X(x) =
Rn(x)

n where Rn(x) =
n∑
j=1

I(Xj ≤ x)

So F̂X(x) gives us the fraction of sample values below x. This is a central object for all

nonparameteric statistics since we make no assumptions about the family of distributions we

sample.
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Functions of a random variable

If X is an r.v., is it meaningful to talk of X2 or log(X)? In what sense?

Definition (Function of a random variable): For an experiment with sample space S, an r.v. X, and a

function g : R→ R, g(X) is the r.v. that maps s to g(X(s)) for all s ∈ S.

From this definition, we see that g(X) is the composition of functions X and g. We first apply X

to s and then g. The PMF of Y = g(X) is easily derived if g is one-to-one since the support of Y

is just the set of all g(x) with x in the support of X.

112 Introduction to Probability
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FIGURE 3.9

The r.v. X is defined on a sample space with 6 elements, and has possible values 0,
1, and 4. The function g is the square root function. Composing X and g gives the
random variable g(X) =

�
X, which has possible values 0, 1, and 2.
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FIGURE 3.10

Since g(X) =
�

X labels each pebble with a number, it is an r.v.

If g is not one-to-one, there may be multiple values of x, such that g(x) = y, and to compute the

PMF, we sum the probabilities of X taking on any of these values.
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Functions of two random variables

Definition (Function of two random variables): Given an experiment with sample space S, if X and Y

are two r.v.s that map s ∈ S to X(s) and Y(s) respectively, then g(X,Y) is the r.v. that maps s to

g(X(s),Y(s)).

Examples:

Z = X+ Y

Z = max(X,Y)

Z = X+X2

etc...

Draw yourself a picture of the sample space for two fair coin tosses, showing how X (no. heads),

Y (no. tails) and X+ Y map elements of S to R.
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Functions of r.v.s : an example

A random walk (story): Suppose that a particle takes n steps on a number line, starting at zero.

At each step, it moves right or left with equal probabilities and each step is independent. Let X

be the number of steps to the right, and Y be the particle’s position after n steps. Find the

PMFs of these r.v.s

Solution: Clearly X ∼ Bin(n, .5) and if X = j, Y = j−n+ j = 2j−n. So Y = 2X−n and since X

takes values in {(0, 1, 2, . . .n)}, Y takes values in {(−n, 2−n, 4−n, . . . ,n)}

The PMF of Y can be found from the PMF of X:

P(Y = k) = P(2X−n = k) = P(X =
n+ k

2
) =

(
n

n+k
2

)(1
2

)n
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Random variables vs. their distributions

Random variables with identical distributions are not the same! Two random variables can have

the same distribution, yet never take the same values

Examples:

X = head on a fair coin flipped once, Y = tail on a fair coin flipped once

X = head on a fair coin flipped once, Y = even no. on the roll of a fair die

This distinction becomes especially important later in the course when we discuss the

convergence of sequences of random variables.
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Independence of two random variables

Definition (Independence of two r.v.s) : The two random variables X and Y are said to be independent if,

for any two sets A and B of real numbers,

P(X ∈A and Y ∈ B) = P(X ∈A)P(Y ∈ B)

In words, if A is an event whose occurrence depends only values taken by X and B’s occurrence

depends only on values taken by Y, then the random variables X and Y are independent only if

the events A and B are independent, for all such events A and B.

• The condition for independence can be alternatively stated in terms of the joint and

marginal distribution functions of X and Y by letting the sets A and B be the intervals

(−∞,x) and (−∞,y) respectively.

P(X≤ x,Y ≤ y) = P(X≤ x)P(Y ≤ y)

Or F(x,y) = F1(x)F2(y)

• For discrete distributions, we simply define the sets A and B as the points x and y and

require f(x,y) = f1(x)f2(y).

• In terms of the density functions, we say that X and Y are independent if it is possible to

choose functions f1 and f2 such that the following factorization holds for

(−∞ < x < ∞ and −∞ < y < ∞)

f(x,y) = f1(x)f2(y)
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Independence of several random variables

Definition (Independence of several r.v.s) : The random variables X1, . . .Xn are said to be independent if

P(X1 ≤ x1,X2 ≤ x2, . . .Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) . . .P(Xn ≤ xn)

for all x1, . . . ,xn in R.

For infinitely many r.v.s, we say that they are independent if every finite subset of the r.v.s is independent.
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