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Expectation of a discrete random variable

Definition (Expectation of a discrete r.v.): The expected value (also called the expectation or mean) of a

discrete random variable whose distinct possible values are x1,x2, . . . is defined by

E(X) =

∞∑
j=1

xjP(X = xj)

This is a probability-weighted average of possible values of X. Think of the expectation as a

point of balance: if weights are placed on a weightless rod, where should a fulcrum be

placed so that the rod balances?

Note:

• E(X) need not be in the support of X:

If X = number of dots in the roll of a die. E(X) =
6∑

x=1

x
6 I{1,2...6}(x) = 3.5

• If the support of X is finite, this expectation always exists. If infinite, the probability of

high values of X must be small.
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Expectations: some useful results

• Result 1: If X and Y are r.v.’s with the same distribution, then

E(X) = E(Y)

(if either side exists)

• Result 2: For any r.v. X and a constant c

E(cX) = cE(X)

• Result 3 (linearity of expectation): For any r.v.s X, Y,

E(X+ Y) = E(X)+E(Y)

Note: We do not require independence of X and Y.

Example: 2 coins, X = at least one head, Y = at least one tail- verify linearity of expectations

using the distributions of X, Y and X+ Y.

Let the events {s} denote the smallest events in the sample space over which X and Y are

defined. Then

E(X)+E(Y) =
∑
s

X(s)P({s})+
∑
s

Y(s)P({s}) =
∑
s

(X+ Y)(s)P({s}) = E(X+ Y)
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The expectations of Bernoulli and Binomial r.v.s

Bernoulli: Using the definition of the expectation, this is 1p+ 0q = p

Binomial: A binomial r.v. can be expressed as the sum of n Bernoulli r.v.s:

X = I1 + I2 + . . .In.

By linearity,

E(X) = E(I1)+E(I2)+ . . .E(In) = np.

Page 3 Rohini Somanathan



Course 003: Basic Econometrics, 2017'

&

$

%

The Geometric distribution

Definition (Geometric distribution): Consider a sequence of independent Bernoulli trials, all with success

probability p ∈ (0, 1). Let X be the number of failures before the first successful trial. Then X ∼ Geom(p)

The PMF is given by

P(X = k) = qkp

for k = 0, 1, 2, . . . where q = 1−p. This is a valid PMF since the sum p
∞∑
k=0

qk = p
1−q = 1

The expectation of a geometric r.v. is defined as

E(X) =

∞∑
k=0

kqkp

We know that
∞∑
k=0

qk = 1
1−q . Differentiating both sides w.r.t. q, we get

∞∑
k=0

kqk−1 = 1
(1−q)2

. Now

multiplying both sides by pq, we get

E(X) = pq
1

(1−q)2
=

q

p
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The Negative Binomial distribution

Definition (Negative Binomial distribution): Consider a sequence of independent Bernoulli trials, all with

success probability p ∈ (0, 1). Let X be the number of failures before the rth success. Then X ∼ NBin(r,p)

The PMF is given by

P(X = k) =

(
k+ r− 1

r− 1

)
prqk

for k = 0, 1, 2, . . . where q = 1−p.

We can write the Negative Binomial as a sum of r Geom(p) r.v.s: X = X1 +X2 · · ·+Xr

The expectation of a Negative Binomial r.v. is therefore

E(X) = r
q

p
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Expectation of a function of X

Result: If X is a discrete random variable and g is a function from R to R, then

E(g(X)) =
∑
x

g(x)P(X = x)

where the sum is taken over all possible values of X.

Intuition: Whenever X = x, g(X) = g(x), so we can assign p(x) to g(x). An easy but illustrative

example is g(X) = X3

This is a very useful result, because it tells us we don’t need the PMF of g(X) to find its

expected value, and we are often interested in functions of random variables.

Examples: expected revenues from the distribution of yields, earnings from a chance game...
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Variance of a random variable

Definition (variance and standard deviation): The variance of and r.v. X is

Var(X) = E[(X−EX)2]

The square root of the variance is called the standard deviation of X.

SD(X) =
√

Var(X)

Notice that by linearity we have E(X−EX) = 0

We can expand the above expression to rewrite the variance in a form that is often more

convenient:

Var(X) = E(X2)− (EX)2

Page 7 Rohini Somanathan



Course 003: Basic Econometrics, 2017'

&

$

%

Variance properties

1. Var(X) ≥ 0 with equality if and only if P(X = a) = 1 for some constant a.

2. Var(aX+b) = a2Var(X) for any constants a and b. It follows that Var(X) = Var(−X)

Proof: Var(aX+b) = E[(aX+b−(aEX+b))2] = E[(a(X−EX))2] = a2E[(X−EX)2] = a2Var(X)

3. Var(X1 + · · ·+Xn) = Var(X1)+ · · ·+Var(Xn) for independent random variables X1, . . . ,Xn.

Proof: Denote EX by µ. For n = 2, E(X1 +X2) = µ1 +µ2 and therefore

Var(X1 +X2) = E[(X1 +X2 −µ1 −µ2)
2] = E[(X1 −µ1)

2 +(X2 −µ2)
2 + 2(X1 −µ1)(X2 −µ2)]

Taking expectations, we get

E[(X1 −µ1)
2 +(X2 −µ2)

2 + 2(X1 −µ1)(X2 −µ2)] = Var(X1)+Var(X2)+ 2E[(X1 −µ1)(X2 −µ2)]

But since X1 and X2 are independent,

E[(X1 −µ1)(X2 −µ2)] = E(X1 −µ1)E(X2 −µ2) = (µ1 −µ1)(µ2 −µ2) = 0

It therefore follows that

Var(X1 +X2) = Var(X1)+Var(X2)

This holds for the sum of any number of independent random variables.
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The Poisson distribution

Definition (Poisson distribution): An r.v. X has the Poisson distribution with parameter λ > 0 if the PMF

of X is

P(X = k) =
e−λλk

k!

for k = 0, 1, 2, . . . . We write this as X ∼ Pois(λ).

This is a valid PMF because the Taylor series 1+ λ+ λ2

2! + λ3

3! + . . . converges to eλ so∑
k

f(k) =
∞∑
k=0

e−λλk

k! = e−λeλ = 1.

As λ gets larger, the PMF becomes more bell-shaped. The mean and variance are both λ.
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Poisson additivity

Result: If X ∼ Pois(λ1) and Y ∼ Pois(λ2) are independent, then X+ Y ∼ Pois(λ1 + λ2)

Proof: To get the PMF of X+ Y, we use the law of total probability:

P(X+ Y = k) =

k∑
j=0

P(X+ Y = k|X = j)P(X = j)

=

k∑
j=0

P(Y = k− j)P(X = j)

=

k∑
j=0

e−λ2λ
k−j
2

(k− j)!

e−λ1λ
j
1

j!

=
e−(λ1+λ2)

k!

k∑
j=0

(
k

j

)
λ
j
1λ

k−j
2

=
e−(λ1+λ2)(λ1 + λ2)

k

k!
(using the binomial theorem)
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A Poisson example

A binomial distribution with large n and small p can be approximated by a Poisson, which is

computationally much easier.

We have a 300 page novel with 1, 500 letters on each page.

Typing errors are as likely to occur for one letter as for another, and the probability of such

an error is given by p = 10−5.

The total number of letters n = (300) ∗ (1500) = 450, 000

Using λ = np, the poisson distribution function gives us the probability of the number of

errors being less than or equal to 10 as:

P(x ≤ 10) ≈
10∑
x=0

e−4.5(4.5)x

x!
= .9933

Rules of Thumb: close to binomial probabilities when n ≥ 20 and p ≤ .05, excellent when n ≥ 100

and np ≤ 10.
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