Topic 5: Moments of a distribution

Rohini Somanathan

Course 003, 2018

The median, mode and quantile function

We have defined the mean and variance of a distribution. Other summary measures are:

Definition (Median): For any random variable X, a median of the distribution of X is defined as a point m such that $P(X \le m) \ge \frac{1}{2}$ and $P(X \ge m) \ge \frac{1}{2}$

Definition (Mode): For a discrete r.v. X, we say that c is the mode of X if it maximizes the PMF: $P(X = c) \ge P(X = x) \forall x$. For a continuous r.v. X, c is a mode if it maximizes the PDF: $f(c) \ge f(x) \forall x$.

Definition (Quantiles): When the distribution function of a random variable X is continuous and one-to-one over the whole set of possible values of X, we call the function F^{-1} the quantile function of X. The value of $F^{-1}(p)$ is called the p^{th} quantile of X or the 100 * p^{th} percentile of X for each 0 .

What quantile is the median? A distribution can have multiple medians and modes, but the multiple medians have to occur side by side, whereas modes can occur all over a distribution.

Example: $X \sim \text{Unif}[a, b]$, so $F(x) = \frac{x-a}{b-a}$ over this interval and the pth quantile is given by:

$$\mathbf{x} = \mathbf{p}\mathbf{b} + (\mathbf{1} - \mathbf{p})\mathbf{a}$$

Compute this for p = .5, .25, .9, ... and think about how the p^{th} quantile is affected by the shape of the density.

Finding quantiles: examples

- 1. Find the medians for each of the following distributions:
 - (a) P(X = 1) = .1 P(X = 2) = .2 P(X = 3) = .3 P(X = 4) = .4(b) P(X = 1) = .1 P(X = 2) = .4 P(X = 3) = .3 P(X = 4) = .2(c)

$$f(x) = \begin{cases} \frac{1}{2} & \text{ for } 0 \leq x \leq 1\\ 1 & \text{ for } 2.5 \leq x \leq 3\\ 0 & \text{ otherwise} \end{cases}$$

2. The p.d.f of a random variable is given by:

$$f(x) = \begin{cases} \frac{1}{8}x & \text{ for } 0 \leq x \leq 4\\ 0 & \text{ otherwise} \end{cases}$$

Find the value of t such that $P(X \le t) = \frac{1}{4}$ and $P(X \ge t) = \frac{1}{2}$ (Answers: $2,\sqrt{8}$)

The MAE and MSE

Result: Let m and μ be the median and the mean of the distribution of X respectively, and let d be any other number. Then the value d that minimizes the mean absolute error is d = m:

 $\mathsf{E}(|\mathsf{X}-\mathsf{m}|) \leq \mathsf{E}(|\mathsf{X}-\mathsf{d}|)$

and the value of d that minimizes the mean squared error is $d = \mu$:

$$\mathsf{E}(X-\mu)^2 \leq \mathsf{E}(X-d)^2$$

Moments of a random variable

Moments are special types of expectations that characterize the shape of a distribution.

Definition (Moments): Let X be a random variable with mean μ and variance σ^2 . For any positive integer k, then the

 k^{th} moment of **X** is the expectation $E(\mathbf{X}^k)$

 k^{th} central moment is $E[(X - \mu)^k]$ and

 k^{th} standardized moment is $E[(\frac{X-\mu}{\sigma})^k]$

Comments:

The mean is the first moment and the variance is the second central moment.

If the k^{th} moment exists, all lower order moments exist and for bounded random variables, all moments exist.

If the distribution of X is symmetric with respect to its mean μ , and the central moment exists for a given odd integer k, then it must be zero (positive and negative terms cancel).

Skewness is defined as the third standardized moment

$$\mathsf{E}\big[\big(\frac{X-\mu}{\sigma}\big)^3\big]$$

Sample moments

If we have a sample of i.i.d random variables, a natural way to estimate a population mean is to take the sample mean, the same is true for other moments of a distribution

Definition (Sample moments): Let $X_1, \ldots X_n$ be i.i.d. random variables. The k^{th} sample moment is the random variable

$$\mathcal{M}_k = \frac{1}{n} \sum_{j=1}^n X_j^k.$$

The sample mean $\bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$ is the first sample moment.

The unbiasedness of the sample mean follows from the linearity of expectations.

Result (Mean and variance of sample mean): Let $X_1, \ldots X_n$ be i.i.d. random variables with mean μ and variance σ^2 . Then the sample mean \bar{X}_n is unbiased for estimating μ :

$$\mathsf{E}(\bar{X}_n) = \mu$$

Since the X_i are independent, the variance of the sample mean is:

$$\operatorname{Var}(\bar{X}_n) = \frac{1}{n^2} \operatorname{Var}(X_1 + \cdots + X_n) = \frac{\sigma^2}{n}$$

Moment generating functions

Definition (Moment generating function or MGF): The moment generating function (MGF) of a random variable X is $M(t) = E(e^{tX})$, as a function of t, if this is finite on some open interval (-a,a) containing 0. Otherwise we say the MGF of X does not exist.

Result (MGF determines the distribution): If two random variables have the same MGF on some open interval (-a,a) containing 0, they have the same distribution.

MGFs help us to

calculate moments

identify distributions

Moments via derivatives of the MGF

Result (Moments via derivatives of the MGF): Given the MGF of X, we can obtain the k^{th} moment of X by evaluating the k^{th} derivative of the MGF at 0.

Proof. The function e^x can be expressed as the sum of the series $1 + x + \frac{x^2}{2!} + \dots$ and so e^{tx} can be expressed as the sum $1 + tx + \frac{t^2x^2}{2!} + \dots$ and the expectation $E(e^{tx}) = \sum_{x=0}^{\infty} (1 + tx + \frac{t^2x^2}{2!} + \dots)f(x)$. If we differentiate this w.r.t t and then set t = 0, we're left with only the second term in parenthesis, so we have $\sum_{x=0}^{\infty} xf(x)$ which is defined as the expectation of X. Similarly, if we differentiate twice, were left with $\sum_{x=0}^{\infty} x^2 f(x)$, which is the second moment. For continuous distributions, we replace the sum $\sum_{x=0}^{\infty}$ with an integral. $\int_{0}^{\infty} (\dots) dx$

Consider $f(x) = e^{-x}I_{(0,\infty)}$ (what this distribution is called?)

$$M(t) = \int_{0}^{\infty} e^{x(t-1)} dx = \frac{e^{x(t-1)}}{t-1} \Big|_{0}^{\infty} = 0 - \frac{1}{t-1} = \frac{1}{1-t} \text{ for } t < 1$$

Taking the derivative of this function with respect to t, we get $\psi'(t) = \frac{1}{(1-t)^2}$, and differentiating again, we get $\psi''(t) = \frac{2}{(1-t)^3}$.

Evaluating the first derivative at t = 0, we get $\mu = \frac{1}{(1-0)^2} = 1$.

The variance $\sigma^2 = \mu_2' - \mu^2 = 2(1-0)^{-3} - 1 = 1$.

Properties of MGFs

1. MGF of location-scale transformations: Let X be a random variable for which the MGF is M_1 and consider the random variable Y = aX + b, where a and b are given constants. Let the MGF of Y be denoted by M_2 . Then for any value of t such that $M_1(t)$ exists,

$$\mathbf{M}_{2}(t) = e^{bt} \mathbf{M}_{1}(at)$$

Example: If $f(x) = e^{-x}I_{(0,\infty)}$ as in the above example, the MGF of the random variable $Y = (X - 1) = \frac{e^{-t}}{1-t}$ for t < 1 (using the first result above, setting a = 1 and b = -1) and if Y = 3 - 2X, the MGF of Y is given by $\frac{e^{3t}}{1+2t}$ for $t > -\frac{1}{2}$

2. MGF of a sum of independent r.v.s: Suppose that X_1, \ldots, X_n are n independent random variables and that M_i is the MGF of X_i . Let $Y = X_1 + \cdots + X_n$ and the MGF of Y be given by M. Then for any value of t such that $M_i(t)$ exists for all $i = 1, 2, \ldots, n$,

$$\mathbf{M}(\mathbf{t}) = \prod_{i=1}^{n} \mathbf{M}_{i}(\mathbf{t})$$

We will now turn to several important applications of this second property.

Bernoulli and Binomial MGFs

Consider n Bernoulli r.v.s X_i with parameter p

The MGF for each of the X_i variables is given by

$$e^{t}P(X_{i} = 1) + (1)P(X_{i} = 0) = pe^{t} + q.$$

Using the additive property of MGFs for independent random variables, we get the MGF for $X = X_1 + \dots + X_n$ as

 $\mathbf{M}(\mathbf{t}) = (\mathbf{p}\mathbf{e}^{\mathbf{t}} + \mathbf{q})^{\mathbf{n}}$

For two Binomial random variables each with parameters (n_1, p) and (n_2, p) , the MGF of their sum is given by the product of the MGFs, $(pe^t + q)^{n_1+n_2}$

Geometric and Negative Binomial MGFs

The density of a Geometric r.v. is $f(x;p) = pq^x$ over all natural numbers x the MGF is given by

$$\mathsf{E}(e^{\mathsf{t}X}) = p \sum_{x=0}^{\infty} (qe^{\mathsf{t}})^x = \frac{p}{1-qe^{\mathsf{t}}} \text{ for } \mathsf{t} < \log\left(\frac{1}{q}\right)$$

We can use this function to get the mean and variance, $\mu=\frac{q}{p}$ and $\sigma^2=\frac{q}{p^2}$

The negative binomial is just a sum of r geometric variables, and the MGF is therefore $(\frac{p}{1-qe^t})^r$ and the corresponding mean and variance is $\mu = \frac{rq}{p}$ and $\sigma^2 = \frac{rq}{p^2}$

The Poisson MGF

Recall the Poisson PMF:

$$\mathsf{P}(\mathsf{X}=\mathsf{x})=\frac{\mathrm{e}^{-\lambda}\lambda^{\mathsf{x}}}{\mathsf{x}!}$$

for x = 0, 1, 2, ...

 $\mathsf{E}(e^{\mathsf{t}X}) = \sum_{x=0}^{\infty} \frac{e^{\mathsf{t}x}e^{-\lambda}\lambda^{x}}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{\mathsf{t}})^{x}}{x!} = e^{\lambda(e^{\mathsf{t}}-1)}$

(Using the result that the series $1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ converges to e^z , here $z = \lambda e^t$)

We see from the form of the above MGF that the sum of k independently distributed Poisson variables has a Poisson distribution with mean $\lambda_1 + \dots \lambda_k$.

The Gamma MGF

Recall the density function for $Gamma(\alpha, \beta)$:

$$f(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{(0,\infty)}(x)$$

The MGF is therefore:

$$\begin{split} \mathcal{M}_{X}(t) &= \int_{0}^{\infty} e^{tx} f(x) dx \\ &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t)x} dx \\ &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\beta-t)^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy \quad (\text{ where } y = (\beta-t)x) \\ &= \left(\frac{\beta}{\beta-t}\right)^{\alpha} \end{split}$$

Since a χ^2_{ν} distribution, is $\text{Gamma}(\frac{\nu}{2}, \frac{1}{2}), M_X(t) = \frac{1}{(1-2t)^{\frac{\nu}{2}}}.$

Gamma transformations

Result (Gamma additivity): Let $X_1, \ldots X_n$ be independently distributed random variables with respective gamma densities $Gamma(\alpha_i, \beta)$. Then

$$Y = \sum_{i=1}^{n} X_{i} \sim Gamma(\sum_{i=1}^{n} \alpha_{i}, \beta)$$

Proof: The MGF of Y is the product of the individual MGFs, i.e.

$$M_{Y}(t) = \prod_{i=1}^{n} M_{X_{i}}(t) = \prod_{i=1}^{n} \left(\frac{\beta}{\beta-t}\right)^{\alpha_{i}} = \left(\frac{\beta}{\beta-t}\right)^{\sum_{i=1}^{n} \alpha_{i}} \text{ for } t < \beta$$

The Normal MGF

Let's begin deriving the MGF of $Z \sim N(0,1)$:

$$M_{Z}(t) = \int_{-\infty}^{\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$
$$= e^{\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-(z-t)^{2}}{2}} dz$$

We completed the square and the term inside the integral is a N(t,1) PDF, so integrates to 1. Therefore:

$$M_{\mathsf{Z}}(\mathsf{t}) = e^{\frac{\mathsf{t}^2}{2}}$$

Any r.v. $X \sim N(\mu, \sigma^2)$ can be written as $X = \mu + \sigma Z$, so we can now use the location-scale result for MGFs to obtain

$$M_{\mathbf{X}}(\mathbf{t}) = e^{\mu \mathbf{t}} M_{\mathbf{Z}}(\sigma \mathbf{t})$$

So for a Normal r.v. $X \sim (\mu, \sigma^2)$:

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Practice obtaining the moments of the distribution by taking derivatives of this function.

Normal transformations

Result 1: Let $X \sim N(\mu, \sigma^2)$ and Y = aX + b, where a and b are given constants and $a \neq 0$, then Y has a normal distribution with mean $a\mu + b$ and variance $a^2\sigma^2$

Proof: The MGF of Y can be expressed as $M_Y(t) = e^{bt} e^{\mu a t + \frac{1}{2}\sigma^2 a^2 t^2} = e^{(a\mu+b)t + \frac{1}{2}(a\sigma)^2 t^2}$. This is simply the MGF for a normal distribution with the mean $a\mu + b$ and variance $a^2\sigma^2$

Result 2: If X_1, \ldots, X_k are independent and X_i has a normal distribution with mean μ_i and variance σ_i^2 , then $Y = X_1 + \cdots + X_k$ has a normal distribution with mean $\mu_1 + \cdots + \mu_k$ and variance $\sigma_1^2 + \cdots + \sigma_k^2$.

Proof: Write the MGF of Y as the product of the MGFs of the X_i 's and gather linear and squared terms separately to get the desired result.

We can combine these two results to derive the distribution of sample mean:

Result 3: Suppose that the random variables X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 , and let \bar{X}_n denote the sample mean. Then \bar{X}_n has a normal distribution with mean μ and variance $\frac{\sigma^2}{n}$.

Note: We already knew the mean and variance of the sample mean, we now have its distribution when the sample is Normal. The CLT extends this to other distributions for large samples.

Transformations of Normals to χ^2 distributions

Result 4 : If $X \sim N(0,1)$, then $Y = X^2$ has a χ^2 distribution with one degree of freedom.

Proof:

$$M_{Y}(t) = \int_{-\infty}^{\infty} e^{x^{2}t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}(1-2t)} dx$$

$$= \frac{1}{\sqrt{(1-2t)}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \frac{1}{\sqrt{(1-2t)}}} e^{-\frac{1}{2}(x\sqrt{(1-2t)})^{2}} dx$$

$$= \frac{1}{\sqrt{(1-2t)}} \text{ for } t < \frac{1}{2}$$

(the integrand is a normal density with $\mu = 0$ and $\sigma^2 = \frac{1}{(1-2t)}$).

The MGF obtained is that of a χ^2 random variable with $\nu = 1$ since the χ^2 MGF is given by $M_X(t) = (1-2t)^{-\frac{\nu}{2}} \text{ for } t < \frac{1}{2} .$

Normals and χ^2 distributions...

Result 5 : Let $X_1, \ldots X_n$ be independent random variables with each $X_i \sim N(0,1)$, then $Y = \sum_{i=1}^n X_i^2$ has a χ^2 distribution with n degrees of freedom.

Proof:

$$M_{Y}(t) = \prod_{i=1}^{n} M_{X_{i}^{2}}(t)$$

=
$$\prod_{i=1}^{n} (1-2t)^{-\frac{1}{2}}$$

=
$$(1-2t)^{-\frac{n}{2}} \text{ for } t < \frac{1}{2}$$

which is the MGF of a χ^2 random variable with $\nu = n$. The parameter ν is called the degrees of freedom.