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Joint distributions

Social scientists are typically interested in the relationship between many random variables.
They may be able to change some of these and would like to understand the effects on others.

Examples:
Education and earnings
Height and longevity
Attendance and learning outcomes
Sex-ratios and areas under rice cultivation

Genetic make-up and disease

All these problems use the joint distribution of two or more random variables.

conditional distributions.

We will also study multivariate extensions of some of special distributions we have considered.

N

We will define multivariate CDFs, PMFs and PDFs and see how to go from joint to marginal and

/
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Joint CDF's

Definition (Joint CDF): The joint CDF of random variables X and Y is the function Fxy given by:

Fxy(x,y)=P(X<x,Y<vy)

Like the univariate CDF, this definition of the joint CDF applies both to discrete and continuous

random variables.

N

/
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PMFs of discrete random variables

Definition (Joint PMF): The joint PMF of discrete random variables X and Y is the function px,y given by:

pX,Y(xvy) = P(X=X7Y=y)

We require px,y(x,U) to be non-negative and ) ) P(X=x,Y=y)=1. Forn r.v.s Xq,...Xn:
x U

PXipXn (X150003Xn) = P(X1 =%X1,..., X0 =Xp)

P(X:.x, Y:y) ’ °

N /
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The marginal and conditional PMF's

Definition (Marginal PMF): For discrete r.v.s X and Y, the marginal PMF of X is given by:

P(X=x)=) P(X=x,Y=-y)
Yy

Definition (Conditional PMF): For discrete r.v.s X and Y, the conditional PMF of Y, given X =X is
given by:
P(X=x,Y=1y)

P(Y=y|X=x) = P(X = x)

I . ‘ . °
) . T ' (‘b\:@@ { {
: . & * *
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Example: Gender and education

When X and Y take only a few values, the PMF can be conveniently presented in a table:

education | gender — | male female
none .05 2
primary .25 1
middle 15 .04
high d .03
senior secondary .03 .02
graduate and above .02 .01

What are some features of a table like this one? In particular, how do we obtain probabilities of
receiving no education
becoming a female graduate
completing primary school

What else can you learn about this population? What is the marginal distribution of education
and gender? Are gender and education are independent?

\\Can one construct the joint distribution from one of the marginal distributions? /
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Example: Bernoulli distributions

If X and Y are both Bernoulli, there are only four points in the support of the joint PMF, pxy

which can be shown in a contingency table like the one below.

Y=1 Y=0 | Total
X =1 .05 .2 .25
X=0 .03 .72 .75
Total .08 .92 1

Say X indicates smoking behavior and Y the incidence of lung disease. We see that

X ~Bern(0.25) and Y ~ Bern(0.08).

The conditional distribution of Y for smokers is Bern(.2) and for non-smokers is Bern(.04)

/
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Continuous bivariate distributions

We can extend our definition of a continuous univariate distribution to the bivariate case:

Definition: Two random variables X and Y have a continuous joint distribution if there exists a nonnegative
function f defined over the xy-plane such that for any subset A of the plane

P[(X,Y) € A]=

f(x,y)dxdy
A
f 15 now called the joint probability density function and must satisfy

1. f(x,y) >0 for —oco<x <00 and —oo< Y < X

2. [ [ f(x,y)dxdy =1
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Bivariate densities.. examples

Example 1: Given the following joint density function on X and Y, we’ll calculate P(X > Y)

cx?y for x2 <y <1
f(x,y) =

0 otherwise

First find ¢ to make this a valid joint density (notice the limits of integration here)-it will turn
out to be 21/4. Then integrate the density over Y € (x2,x) and X € (—1,1). Now using this
density, P(X > Y) = 23—0.

Example 2: A point (X,Y) is selected at random from inside the circle x? + y%? < 9. To determine

1

f(x,y), we find a constant ¢ such that the volume (cX area of S) is 1 so c= 5

N /
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Using joint CDF's

Given a joint CDF, F(x,y), the

probability that (X,Y) will lie in a specified rectangle in the xy-plane is given by
Pr(a<X<band c<Y<d)=F(b,d) —F(a,d) —F(b,c) +F(a,c)

Note: The distinction between weak and strict inequalities is important when points on the boundary of the

rectangle occur with positive probability.

and distribution functions of X and Y are derived as:

Pr(X <x)=Fi(x) = lim F(x,y) and Pr(Y < y) =Fa(y) = lim F(x,y)

Yy—>0

If F(x,y) is differentiable, the joint density is:

82F(x,y)

f(x,y) = SXSy

Example: Suppose that, for x and y € [0,2], we have F(x,y) = 1—16xy (x +1y), derive the
distribution functions of X and Y and their joint density.

/
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Marginal and conditional densities

For a continuous joint density f(x,y), the marginal density functions for X and Y are given by:

(0.9] (0.9]

f1(x) = J f(x,y)dy and f2(y) = J f(x,y)dx

— 00 —0o0

and the conditional probability density function of Y giwven X =X as

f(x,y)

for (—oo<x <00 and — o0 <Y < 00)

gz2(ylx) =

f1(x)

The total area under the function in the cross-section above is f;(x), so dividing by this ensures

\\that the conditional pdf integrates to 1. /
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Joint densities for independent random variables

Recall that for independent r.v.s, f(x,y) = f(x)f(y).

Example 1: There are two independent measurements X and Y of rainfall at a certain
location:

2x for 0<x<1
g(x) =

0 otherwise

Find the probability that X +Y < 1.

The joint density 4xy is got by multiplying the marginal densities because these variables
are independent. The required probability of % is then obtained by integrating over
y € (0,1 —x) and x € (0,1)

Example 2: Given the following density, can we tell whether the variables X and Y are
independent?

ke *t2)  for x >0and y >0
f(X, Yy ) = .
0 otherwise
Notice that we can factorize the joint density as the product of k;e ™™ and kye2Y where
kiks = k. To obtain the marginal densities of X and Y, we multiply these functions by
appropriate constants which make them integrate to unity. This gives us the two
exponential distributions:

fi1(x) = e for x > 0 and f3(y) =2e"2Y for y >0

/
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Dependent random variables..examples

Given the following density densities, let’s see why the variables X and Y are dependent:

1.

x+1yYy forO0O<x<landO<yc<l1
f(xay)= .
0 otherwise

Notice that we cannot factorize the joint density as the product of a non-negative function
of x and another non-negative function of y. Computing the marginals gives us

1 1
fl(x)=x—|—§ for 0 <x <1 and fz(y)=y—|—§ for 0<y«<1

so the product of the marginals is not equal to the joint density.

Suppose we have

kx2y? for x2+y?2<1
f(x,y) = .
0 otherwise

/
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Independence of continuous r.v.s: a result

Result: Whenever the space of positive probability density of X and Y is bounded by a curve, rather than a
rectangle, the two random wvariables are dependent. If, on the other hand, the support of f(x,y) is a rectangle
and the joint density is of the form f(x,y) =kg(x)h(y), then X and Y are independent.

Proof: For the first part, consider any point (x,y) outside the set where f(x,y) > 0. If x and y are
independent, we have f(x,y) = f1(x)f2(y), so one of these must be zero. Now as we move due
south and enter the set where f(x,y) > 0, our value of x has not changed, so it could not be that
f1(x) was zero at the original point. Similarly, if we move west, y is unchanged so it could not be
that fy(y) was zero at the original point. So we have a contradiction.

For the latter part, suppose the support of f(x,y) is given by the rectangle abcd where
—o<a<b<owand —0o<c<d<owand a<x<band c <y < d. Now the joint density

f(x,y) can be written as k;g(x)ksh(y) where k; = —1— and ky = ~—1—.
g(x)dx h(y)dy

Q—g
0O—QQ
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Conditional and joint densities..an example

Suppose we start with the following density function for a variable Xj:

e Xfor x>0
fi(x) = )
0 otherwise

and are told that for any given value of X; = x;, two other random variables X, and X3 are
independently and identically distributed with the following conditional p.d.f.:

x1e X1t for t>0

g(tlxy1) =

0 otherwise

The conditional p.d.f. is now given by g23(Xx2,X3|X1) = x%e_xl(x2+x3) for non-negative values of
X2,X3 (and zero otherwise) and the joint p.d.f of the three random variables is given by:

f(x1,%2,%3) = f1(X1) g23(X2,x3/x1) = x3e X1 {1Hx2Hx3)

for non-negative values of each of these variables. We can now obtain the marginal joint p.d.f of

X and X3 by integrating over X;

N /
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Deriving the distributions of functions of an r.v.

We’d like to derive the distribution of X%, knowing that X has a uniform distribution on (—1,1)

1

The density f(x) of X over this interval is ; and Y takes values in [0,1).

|

The distribution function of Y is therefore given by

We can differentiate this to obtain the density function of Y

_1
g(y) =<y

0 otherwise

for 0<y«<1

N /
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Covariance and correlation

Covariance measures the tendency for two r.v.s to go up or down together, relative to their
expected values.

Definition (Covariance): The covariance between r.v.s X and Y is

Cov(X,Y)=E[(X —EX)(Y —EY)]

Definition (Correlation): The correlation between r.v.s X and Y is

B Cov(X,Y)
~VVar(X)Var(Y)

P

—1 < p <1 (by the Cauchy Schwarz inequality, |[E(XY)| < \/E(X2)E(Y2) written in deviation
form.)

We can expand the above expression for covariance to get

Cov(X,Y)=E(XY) — E(X)E(Y)

If X and Y are independent, then clearly their covariance is zero. The reverse is not true. For

example, let X ~ N(0,1) and Y = X2. Then E(XY) = E(X3) = 0 since all odd moments of a Normal

\\distribution are zero, but the variables are dependent. /
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Properties of covariance and correlation

N

The following results can be verified using basic definitions and properties of expectations:

1.

2
3
4.
5

Cov(X,X)=Var(X)

Cov(X,Y)=Cov(Y,X)
Cov(aX,Y)=aCov(X,Y) for any constant a.
Cov(X+Y,Z)=Cov(X,Z) + Cov(Y,Z)

Let Y =aX + b for some constants a and b. If a>0, then p(X,Y) =1. If a <0, then
pP(X,Y)=—1

Proof: Y —uy = a(X —px), so Cov(X,Y) = aE[(X — ux)?]= ac’ and oy =|alox, plug these values into the
expression for p to get the result.

Var(X+Y)=Var(X)+ Var(Y) +2Cov(X,Y) .

Proof:

Var(X+Y) =E[X+Y —pux —uy)2 = E((X — px)? + (Y — py)? +2(X — px ) (Y — py) = Var(X) + Var(Y) +2Cov(X,Y)

If X4,...,X; are random variables each with finite variance, then

Var(i Xi) = i Var(Xi) +23 3 ;5 Cov(Xi, Xj)

i=1 i=1

/
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The Multivariate Normal

Definition (Multivariate Normal ): A random vector X = (Xy,...Xn) is satd to have a Multivariate
Normal distribution if every linear combination of the X; has a Normal distribution. That s 1 X1 + ... T Xy

is Normal for all t1,ta,...tx. An important special case is k =2 and we call this the Bivariate Normal (BVN),
whose pdf 1s given by

1 _ﬁ (%)2_29(X1;1u1)(X2;2u2)+(x2;2”2)2

f X1,X9) = ————¢€
X,y (X1,X2) e p——

where T =+/1 — p2.

With an MV N random vector, uncorrelated implies independent.

N /
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