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Joint distributions

Social scientists are typically interested in the relationship between many random variables.

They may be able to change some of these and would like to understand the effects on others.

Examples:

Education and earnings

Height and longevity

Attendance and learning outcomes

Sex-ratios and areas under rice cultivation

Genetic make-up and disease

All these problems use the joint distribution of two or more random variables.

We will define multivariate CDFs, PMFs and PDFs and see how to go from joint to marginal and

conditional distributions.

We will also study multivariate extensions of some of special distributions we have considered.
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Joint CDFs

Definition (Joint CDF): The joint CDF of random variables X and Y is the function FX,Y given by:

FX,Y(x,y) = P(X≤ x,Y ≤ y)

Like the univariate CDF, this definition of the joint CDF applies both to discrete and continuous

random variables.
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PMFs of discrete random variables

Definition (Joint PMF): The joint PMF of discrete random variables X and Y is the function pX,Y given by:

pX,Y(x,y) = P(X = x,Y = y)

We require pX,Y(x,y) to be non-negative and
∑
x

∑
y
P(X = x,Y = y) = 1. For n r.v.s X1, . . .Xn:

pX1 ,...,Xn(x1, . . . ,xn) = P(X1 = x1, . . . ,Xn = xn)

Joint distributions 279

Figure 7.1 shows a sketch of what the joint PMF of two discrete r.v.s could look like.
The height of a vertical bar at (x, y) represents the probability P (X = x, Y = y).
For the joint PMF to be valid, the total height of the vertical bars must be 1.
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FIGURE 7.1

Joint PMF of discrete r.v.s X and Y .

From the joint distribution of X and Y , we can get the distribution of X alone by
summing over the possible values of Y . This gives us the familiar PMF of X that
we have seen in previous chapters. In the context of joint distributions, we will call
it the marginal or unconditional distribution of X, to make it clear that we are
referring to the distribution of X alone, without regard for the value of Y .

Definition 7.1.3 (Marginal PMF). For discrete r.v.s X and Y , the marginal PMF
of X is

P (X = x) =
�

y

P (X = x, Y = y).

The marginal PMF of X is the PMF of X, viewing X individually rather than
jointly with Y . The above equation follows from the axioms of probability (we are
summing over disjoint cases). The operation of summing over the possible values
of Y in order to convert the joint PMF into the marginal PMF of X is known as
marginalizing out Y .

The process of obtaining the marginal PMF from the joint PMF is illustrated in
Figure 7.2. Here we take a bird’s-eye view of the joint PMF for a clearer perspective;
each column of the joint PMF corresponds to a fixed x and each row corresponds
to a fixed y. For any x, the probability P (X = x) is the total height of the bars in
the corresponding column of the joint PMF: we can imagine taking all the bars in
that column and stacking them on top of each other to get the marginal probability.
Repeating this for all x, we arrive at the marginal PMF, depicted in bold.
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The marginal and conditional PMFs

Definition (Marginal PMF): For discrete r.v.s X and Y , the marginal PMF of X is given by:

P(X = x) =
∑
y

P(X = x,Y = y)

Definition (Conditional PMF): For discrete r.v.s X and Y , the conditional PMF of Y , given X = x is

given by:

P(Y = y|X = x) =
P(X = x,Y = y)

P(X = x)

280 Introduction to Probability
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FIGURE 7.2

Bird’s-eye view of the joint PMF from Figure 7.1. The marginal PMF P (X = x)
is obtained by summing over the joint PMF in the y-direction, as indicated by the
arrow.

Similarly, the marginal PMF of Y is obtained by summing over all possible values
of X. So given the joint PMF, we can marginalize out Y to get the PMF of X, or
marginalize out X to get the PMF of Y . But if we only know the marginal PMFs
of X and Y , there is no way to recover the joint PMF without further assumptions.
It is clear how to stack the bars in Figure 7.2, but very unclear how to unstack the
bars after they have been stacked!

Another way to go from joint to marginal distributions is via the joint CDF. In that
case, we take a limit rather than a sum: the marginal CDF of X is

FX(x) = P (X � x) = lim
y��

P (X � x, Y � y) = lim
y��

FX,Y (x, y).

However, as mentioned above it is usually easier to work with joint PMFs.

Now suppose that we observe the value of X and want to update our distribution
of Y to reflect this information. Instead of using the marginal PMF P (Y = y),
which does not take into account any information about X, we should use a PMF
that conditions on the event X = x, where x is the value we observed for X. This
naturally leads us to consider conditional PMFs.

Definition 7.1.4 (Conditional PMF). For discrete r.v.s X and Y , the conditional
PMF of Y given X = x is

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
.

Joint distributions 281

This is viewed as a function of y for fixed x.

Note that the conditional PMF (for fixed x) is a valid PMF. So we can define the
conditional expectation of Y given X = X, denoted by E(Y |X = x), in the same
way that we defined E(Y ) except that we replace the PMF of Y with the conditional
PMF of Y . Chapter 9 is devoted to conditional expectation.

Figure 7.3 illustrates the definition of conditional PMF. To condition on the event
X = x, we first take the joint PMF and focus in on the vertical bars where X takes
on the value x; in the figure, these are shown in bold. All of the other vertical bars are
irrelevant because they are inconsistent with the knowledge that X = x occurred.
Since the total height of the bold bars is the marginal probability P (X = x),
we then renormalize the conditional PMF by dividing by P (X = x); this ensures
that the conditional PMF will sum to 1. Therefore conditional PMFs are PMFs,
just as conditional probabilities are probabilities. Notice that there is a di�erent
conditional PMF of Y for every possible value of X; Figure 7.3 highlights just one
of these conditional PMFs.
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FIGURE 7.3

Conditional PMF of Y given X = x. The conditional PMF P (Y = y|X = x) is
obtained by renormalizing the column of the joint PMF that is compatible with the
event X = x.

We can also relate the conditional distribution of Y given X = x to that of X given
Y = y, using Bayes’ rule:

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)
.

And using the law of total probability, we have another way of getting the marginal
PMF: the marginal PMF of X is a weighted average of conditional PMFs P (X =
x|Y = y), where the weights are the probabilities P (Y = y):

P (X = x) =
�

y

P (X = x|Y = y)P (Y = y).
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Example: Gender and education

When X and Y take only a few values, the PMF can be conveniently presented in a table:

education ↓ gender → male female

none .05 .2

primary .25 .1

middle .15 .04

high .1 .03

senior secondary .03 .02

graduate and above .02 .01

What are some features of a table like this one? In particular, how do we obtain probabilities of

receiving no education

becoming a female graduate

completing primary school

What else can you learn about this population? What is the marginal distribution of education

and gender? Are gender and education are independent?

Can one construct the joint distribution from one of the marginal distributions?
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Example: Bernoulli distributions

If X and Y are both Bernoulli, there are only four points in the support of the joint PMF, pX,Y

which can be shown in a contingency table like the one below.

Y = 1 Y = 0 Total

X = 1 .05 .2 .25

X = 0 .03 .72 .75

Total .08 .92 1

Say X indicates smoking behavior and Y the incidence of lung disease. We see that

X ∼ Bern(0.25) and Y ∼ Bern(0.08).

The conditional distribution of Y for smokers is Bern(.2) and for non-smokers is Bern(.04)
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Continuous bivariate distributions

We can extend our definition of a continuous univariate distribution to the bivariate case:

Definition: Two random variables X and Y have a continuous joint distribution if there exists a nonnegative

function f defined over the xy-plane such that for any subset A of the plane

P[(X,Y) ∈A] =

∫
A

∫
f(x,y)dxdy

f is now called the joint probability density function and must satisfy

1. f(x,y)≥ 0 for −∞ < x <∞ and −∞ < y <∞
2.

∞∫
−∞

∞∫
−∞ f(x,y)dxdy = 1

Joint distributions 287

x
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fX,Y (x,y)

FIGURE 7.4

Joint PDF of continuous r.v.s X and Y .

Definition 7.1.13 (Marginal PDF). [Marginal PDF]For continuous r.v.s X and Y
with joint PDF fX,Y , the marginal PDF of X is

fX(x) =

� �

��
fX,Y (x, y)dy.

This is the PDF of X, viewing X individually rather than jointly with Y .

To simplify notation, we have mainly been looking at the joint distribution of two
r.v.s rather than n r.v.s, but marginalization works analogously with any number
of variables. For example, if we have the joint PDF of X, Y, Z, W but want the joint
PDF of X, W , we just have to integrate over all possible values of Y and Z:

fX,W (x, w) =

� �

��

� �

��
fX,Y,Z,W (x, y, z, w)dydz.

Conceptually this is very easy—just integrate over the unwanted variables to get
the joint PDF of the wanted variables—but computing the integral may or may not
be di�cult.

Returning to the case of the joint distribution of two r.v.s X and Y , let’s consider
how to update our distribution for Y after observing the value of X, using the
conditional PDF.

Definition 7.1.14 (Conditional PDF). For continuous r.v.s X and Y with joint
PDF fX,Y , the conditional PDF of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

This is considered as a function of y for fixed x.

Notation 7.1.15. The subscripts that we place on all the f ’s are just to remind
us that we have three di�erent functions on our plate. We could just as well write
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Bivariate densities.. examples

Example 1: Given the following joint density function on X and Y, we’ll calculate P(X≥ Y)

f(x,y) =

cx2y for x2 ≤ y≤ 1

0 otherwise

First find c to make this a valid joint density (notice the limits of integration here)-it will turn

out to be 21/4. Then integrate the density over Y ∈ (x2,x) and X ∈ (−1, 1). Now using this

density, P(X≥ Y) = 3
20 .

Example 2: A point (X,Y) is selected at random from inside the circle x2 +y2 ≤ 9. To determine

f(x,y), we find a constant c such that the volume (c× area of S) is 1 so c = 1
9π
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Using joint CDFs

Given a joint CDF, F(x,y), the

probability that (X,Y) will lie in a specified rectangle in the xy-plane is given by

Pr(a < X≤ b and c < Y ≤ d) = F(b,d)− F(a,d)− F(b,c)+ F(a,c)

Note: The distinction between weak and strict inequalities is important when points on the boundary of the

rectangle occur with positive probability.

and distribution functions of X and Y are derived as:

Pr(X≤ x) = F1(x) = lim
y→∞F(x,y) and Pr(Y ≤ y) = F2(y) = lim

x→∞F(x,y)
If F(x,y) is differentiable, the joint density is:

f(x,y) =
δ2F(x,y)

δxδy

Example: Suppose that, for x and y ∈ [0, 2], we have F(x,y) = 1
16xy(x+y), derive the

distribution functions of X and Y and their joint density.
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Marginal and conditional densities

For a continuous joint density f(x,y), the marginal density functions for X and Y are given by:

f1(x) =

∞∫
−∞
f(x,y)dy and f2(y) =

∞∫
−∞
f(x,y)dx

and the conditional probability density function of Y given X = x as

g2(y|x) =
f(x,y)

f1(x)
for (−∞ < x <∞ and −∞ < y <∞)

The total area under the function in the cross-section above is f1(x), so dividing by this ensures

that the conditional pdf integrates to 1.
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Joint densities for independent random variables

Recall that for independent r.v.s, f(x,y) = f(x)f(y).

Example 1: There are two independent measurements X and Y of rainfall at a certain

location:

g(x) =

2x for 0≤ x≤ 1

0 otherwise

Find the probability that X+ Y ≤ 1.

The joint density 4xy is got by multiplying the marginal densities because these variables

are independent. The required probability of 1
6 is then obtained by integrating over

y ∈ (0, 1− x) and x ∈ (0, 1)

Example 2: Given the following density, can we tell whether the variables X and Y are

independent?

f(x,y) =

ke−(x+2y) for x≥ 0 and y≥ 0

0 otherwise

Notice that we can factorize the joint density as the product of k1e
−x and k2e

−2y where

k1k2 = k. To obtain the marginal densities of X and Y, we multiply these functions by

appropriate constants which make them integrate to unity. This gives us the two

exponential distributions:

f1(x) = e−x for x≥ 0 and f2(y) = 2e−2y for y≥ 0
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Dependent random variables..examples

Given the following density densities, let’s see why the variables X and Y are dependent:

1.

f(x,y) =

x+y for 0 < x < 1 and 0 < y < 1

0 otherwise

Notice that we cannot factorize the joint density as the product of a non-negative function

of x and another non-negative function of y. Computing the marginals gives us

f1(x) = x+
1

2
for 0 < x < 1 and f2(y) = y+

1

2
for 0 < y < 1

so the product of the marginals is not equal to the joint density.

2. Suppose we have

f(x,y) =

kx2y2 for x2 +y2 ≤ 1

0 otherwise
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Independence of continuous r.v.s: a result

Result: Whenever the space of positive probability density of X and Y is bounded by a curve, rather than a

rectangle, the two random variables are dependent. If, on the other hand, the support of f(x,y) is a rectangle

and the joint density is of the form f(x,y) = kg(x)h(y), then X and Y are independent.

Proof: For the first part, consider any point (x,y) outside the set where f(x,y) > 0. If x and y are

independent, we have f(x,y) = f1(x)f2(y), so one of these must be zero. Now as we move due

south and enter the set where f(x,y) > 0, our value of x has not changed, so it could not be that

f1(x) was zero at the original point. Similarly, if we move west, y is unchanged so it could not be

that f2(y) was zero at the original point. So we have a contradiction.

For the latter part, suppose the support of f(x,y) is given by the rectangle abcd where

−∞≤ a < b≤∞ and −∞≤ c < d≤∞ and a≤ x≤ b and c≤ y≤ d. Now the joint density

f(x,y) can be written as k1g(x)k2h(y) where k1 =
1

b∫
a
g(x)dx

and k2 =
1

d∫
c
h(y)dy

.
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Conditional and joint densities..an example

Suppose we start with the following density function for a variable X1:

f1(x) =

e−x for x > 0

0 otherwise

and are told that for any given value of X1 = x1, two other random variables X2 and X3 are

independently and identically distributed with the following conditional p.d.f.:

g(t|x1) =

x1e−x1t for t > 0

0 otherwise

The conditional p.d.f. is now given by g23(x2,x3|x1) = x21e
−x1(x2+x3) for non-negative values of

x2,x3 (and zero otherwise) and the joint p.d.f of the three random variables is given by:

f(x1,x2,x3) = f1(x1)g23(x2,x3|x1) = x21e
−x1(1+x2+x3)

for non-negative values of each of these variables. We can now obtain the marginal joint p.d.f of

X2 and X3 by integrating over X1

Page 14 Rohini Somanathan



Course 003: Basic Econometrics, 2017'

&

$

%

Deriving the distributions of functions of an r.v.

We’d like to derive the distribution of X2, knowing that X has a uniform distribution on (−1, 1)

The density f(x) of X over this interval is 1
2 and Y takes values in [0, 1).

The distribution function of Y is therefore given by

G(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−
√
y≤ X≤

√
y) =

√
y∫

−
√
y

f(x)dx =
√
y

We can differentiate this to obtain the density function of Y

g(y) =

 1
2
√
y

for 0 < y < 1

0 otherwise
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Covariance and correlation

Covariance measures the tendency for two r.v.s to go up or down together, relative to their

expected values.

Definition (Covariance): The covariance between r.v.s X and Y is

Cov(X,Y) = E[(X−EX)(Y −EY)]

Definition (Correlation): The correlation between r.v.s X and Y is

ρ =
Cov(X,Y)√
Var(X)Var(Y)

−1≤ ρ≤ 1 (by the Cauchy Schwarz inequality, |E(XY)|≤
√
E(X2)E(Y2) written in deviation

form.)

We can expand the above expression for covariance to get

Cov(X,Y) = E(XY)−E(X)E(Y)

If X and Y are independent, then clearly their covariance is zero. The reverse is not true. For

example, let X ∼N(0, 1) and Y = X2. Then E(XY) = E(X3) = 0 since all odd moments of a Normal

distribution are zero, but the variables are dependent.
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Properties of covariance and correlation

The following results can be verified using basic definitions and properties of expectations:

1. Cov(X,X) = Var(X)

2. Cov(X,Y) =Cov(Y ,X)

3. Cov(aX,Y) = aCov(X,Y) for any constant a.

4. Cov(X+ Y ,Z) =Cov(X,Z)+Cov(Y ,Z)

5. Let Y = aX+b for some constants a and b. If a > 0, then ρ(X,Y) = 1. If a < 0, then

ρ(X,Y) = −1

Proof: Y −µY = a(X−µx), so Cov(X,Y) = aE[(X−µX)2] = aσ2
X and σY = |a|σX, plug these values into the

expression for ρ to get the result.

6. Var(X+ Y) = Var(X)+Var(Y)+ 2Cov(X,Y) .

Proof:

Var(X+ Y) = E[(X+ Y −µX −µY )2] = E((X−µx)
2 +(Y −µY )2 + 2(X−µx)(Y −µY ) = Var(X)+Var(Y)+ 2Cov(X,Y)

7. If X1, . . . ,Xn are random variables each with finite variance, then

Var(
n∑
i=1
Xi) =

n∑
i=1
Var(Xi)+ 2

∑∑
i<jCov(Xi,Xj)
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The Multivariate Normal

Definition (Multivariate Normal ): A random vector X = (X1, . . .Xn) is said to have a Multivariate

Normal distribution if every linear combination of the Xj has a Normal distribution. That is t1X1 + . . . tkXk
is Normal for all t1, t2, . . . tk. An important special case is k = 2 and we call this the Bivariate Normal (BVN),

whose pdf is given by

fX,Y(x1,x2) =
1

2πσ1σ2τ
e

− 1
2τ2

[
(
x1−µ1
σ1

)2
−2ρ

(
x1−µ1
σ1

)(
x2−µ2
σ2

)
+
(
x2−µ2
σ2

)2
]

where τ =
√

1− ρ2.

With an MVN random vector, uncorrelated implies independent.
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312 Introduction to Probability
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FIGURE 7.11

Joint PDFs of two Bivariate Normal distributions. On the left, X and Y are
marginally N (0, 1) and have zero correlation. On the right, X and Y are marginally
N (0, 1) and have correlation 0.75.
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