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Random Samples

We cannot usually look at the population as a whole because it would take too long, be too

expensive or impractical for other reasons (we crash cars to see know how sturdy they are)

We would like to choose a sample which is representative of the population or process that

interests us. A random sample is one in which all objects in the population have an equal chance

of being selected.

Definition (random sample): Let f(x) be the density function of a continuous random variable X. Consider

a sample of size n from this distribution. We can think of the first value drawn as a realization of the random

variable X1, similarly for X2 . . .Xn. (x1, . . . ,xn) is a random sample if f(x1, . . . ,xn) = f(x1)f(x2) . . . f(xn).

This is often hard to implement in practice unless we think through the possible pitfalls.

Example: We have a bag of sweets and chocolates of different types (eclairs, five-stars, gems...)

and want to estimate the average weight of a items in the bag. If we pass the bag around, each

student puts their hand in and picks 5 items and replaces these, how do you think these sample

averages would compare with the true average?

Now think about caveats when collecting a household sample to estimate consumption.
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Statistical Models

Definition (statistical model): A statistical model for a random sample consists of a parametric functional

form, f(x;Θ) together with a parameter space Ω which defines the potential candidates for Θ.

Examples: We may specify that our sample comes from

• a Bernoulli distribution and Ω = {p : p ∈ [0, 1]}

• a Normal distribution where Ω = {(µ,σ2) : µ ∈ (−∞,∞),σ > 0}

Note that Ω could be much more restrictive. For example, we could have p ∈ ( 1
2 , 1) in the first

case and µ ∈ (0, 100) in the second case.
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Estimators and Estimates

Definition (estimator): An estimator of the parameter θ, based on the random variables X1, . . . ,Xn, is a

real-valued function δ(X1, . . . ,Xn) which specifies the estimated value of θ for each possible set of values of

X1, . . . ,Xn.

Since an estimator δ(X1, . . . ,Xn) is a function of random variables, X1, . . . ,Xn, the estimator

is itself a random variable and its probability distribution can be derived from the joint

distribution of X1, . . . ,Xn.

A point estimate is a specific value of the estimator δ(x1, . . . ,xn) that is determined by using

the observed values x1, . . . ,xn.

There are lots of potential functions of the random sample, δ, what criteria should we use

to choose among these?
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Desirable Properties of Estimators

1. Unbiasedness : E(θ̂n) = θ ∀ θ ∈Ω.

2. Consistency: limn→∞P(|θ̂n−θ| > ε) = 0 for every ε > 0.

3. Minimum MSE: E(θ̂n−θ)2 ≤ E(θ̃n−θ)2 for any θ̃n .

Using the MSE criterion could lead us to choose biased estimators because

MSE(θ̂) = Var(θ̂)+Bias(θ̂,θ)2

MSE(θ̂) = E(θ̂−θ)2 = E[θ̂−E(θ̂)+E(θ̂)−θ]2 = E[(θ̂−E(θ̂))2+(E(θ̂)−θ)2+2(θ̂−E(θ̂))(E(θ̂)−θ)] = Var(θ̂)+Bias(θ̂,θ)2+0

A Minimum Variance Unbiased Estimator (MVUE) is an estimator which has the smallest

variance among the class of unbiased estimators.

A Best Linear Unbiased Estimator (BLUE) is an estimator which has the smallest variance among

the class of linear unbiased estimators ( the estimates must be linear functions of sample values).
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Maximum Likelihood Estimators

Definition (M.L.E.): Suppose that the random variables X1, . . . ,Xn form a random sample from a discrete or

continuous distribution for which the p.f. or p.d.f is f(x|θ), where θ belongs to some parameter space Ω. For

any observed vector x = (x1, . . . ,xn), let the value of the joint p.f. or p.d.f. be denoted by fn(x|θ). When

fn(x|θ) is regarded a function of θ for a given value of x, it is called the likelihood function.

For each possible observed vector x, let δ(x) ∈Ω denote a value of θ ∈Ω for which the likelihood function

fn(x|θ) is a maximum, and let θ̂ = δ(X) be the estimator of θ defined in this way. The estimator θ̂ is called

the maximum likelihood estimator of θ (M.L.E.).

For a given sample, δ(x) is the maximum likelihood estimate of θ (also called M.L.E.)
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M.L.E..of a Bernoulli parameter

• The Bernoulli density can be written as f(x;θ) = θx(1 −θ)1−x, x ∈ {0, 1}.

• For any observed values x1, . . . ,xn, where each xi is either 0 or 1, the likelihood function is

given by: fn(x|θ) =
n∏
i=1
θxi(1 −θ)1−xi = θ

∑
xi (1 −θ)

n−
∑
xi

• The value of θ that will maximize this will be the same as that which maximizes the log of

the likelihood function, L(θ) which is given by:

L(θ) =
( n∑
i=1

xi

)
lnθ+

(
n−

n∑
i=1

xi

)
ln(1 −θ)

The first order condition for an extreme point is given by:

(
n∑
i=1
xi

)
θ̂

=
n−

(
n∑
i=1
xi

)
1−θ̂

and solving

this, we get θ̂MLE =

n∑
i=1
xi

n .

Confirm that the second derivate of L(θ) is in fact negative, so we do have a maximum.
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Sampling from a normal distribution

fn(x|µ,σ2) =
1

(2πσ2)
n
2
e
− 1

2σ2 (
n∑
i=1

(xi−µ)
2)

L(µ,σ2) = −
n

2
ln(2π)−

n

2
ln(σ2)−

1

2σ2

n∑
i=1

(xi−µ)
2

If the variance is known, we have to maximize this function w.r.t. µ, and our first-order

condition is: 1
σ2 (

n∑
i=1
xi−nµ) = 0, so µ̂ = x̄n.

If both the mean and variance are unknown, the likelihood function has to be maximized w.r.t.

both µ and σ2 and we have two first-order conditions:

∂L

∂µ
=

1

σ2
(

n∑
i=1

xi−nµ) (1)

∂L

∂σ2
= −

n

2σ2
+

1

2σ4

n∑
i=1

(xi−µ)
2 (2)

We obtain µ̂ = x̄n from setting ∂L
∂µ = 0 and substitute this into the second condition to obtain

σ̂2 = 1
n

n∑
i=1

(xi− x̄n)
2

The maximum likelihood estimators are therefore µ̂ = X̄n and σ̂2 = 1
n

n∑
i=1

(Xi− X̄n)
2. M.L.E’s in

general are not unbiased as seen here.
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Sampling from a uniform distribution

Maximum likelihood estimators need not exist and when they do, they may not be unique as the

following examples illustrate:

If X1, . . . ,Xn is a random sample from a uniform distribution on [0,θ], the likelihood function is

fn(x;θ) =
1

θn

This is decreasing in θ and is therefore maximized at the smallest admissible value of θ which is

given by θ̂ =max(X1 . . .Xn).

If instead, the support is (0,θ) instead of [0,θ], then no M.L.E. exists since the maximum sample

value is no longer an admissible candidate for θ.

If the random sample is from a uniform distribution on [θ,θ+ 1]. Now θ could lie anywhere in

the interval [max(x1, . . . ,xn)− 1, min(x1, . . . ,xn)] and the method of maximum likelihood does not

provide us with a unique estimate.

Likelihood functions are often complicated and we use numerical optimization methods to

compute the M.L.E. (Gamma, Cauchy distributions)

Page 8 Rohini Somanathan



Course 003: Basic Econometrics, 2017'

&

$

%

Properties of Maximum Likelihood Estimators

Invariance: If θ̂ is the maximum likelihood estimator of θ, and g(θ) is a one-to-one

function of θ, then g(θ̂) is a maximum likelihood estimator of g(θ)

Example: The sample mean and sample variance are the M.L.E.s of the mean and variance of a random

sample from a normal distribution so

– the M.L.E. of the standard deviation is the square root of the sample variance

– the M.L.E of E(X2) is equal to the sample variance plus the square of the sample mean, i.e. since

E(X2) = σ2 +µ2, the M.L.E of E(X2) = σ̂2 + µ̂2

Consistency: If there exists a unique M.L.E. θ̂n of a parameter θ for a sample of size n,

then plim θ̂n = θ.

Note: MLEs are not, in general, unbiased.

Example: The MLE of the variance of a normally distributed variable is given by σ̂2
n =

n∑
i=1

(Xi−X̄n)2

n . Let’s rewrite

this and take its expectation:

σ̂2
n =

1

n

n∑
i=1

(X2
i − 2XiX̄+ X̄2) =

1

n
(
∑
X2
i − 2X̄

∑
Xi +

∑
X̄2) =

1

n
(
∑
X2
i − 2nX̄2 +nX̄2)] =

1

n
(
∑
X2
i −nX̄

2)

E[σ̂2
n] = E[

1

n
(
∑
X2
i −nX̄

2)] =
1

n
[
∑
E(X2

i)−nE(X̄2)] =
1

n
[n(σ2 +µ2)−n(

σ2

n
+µ2)] = σ2 n− 1

n

Notice that n
n−1E[σ̂

2
n] = σ2 so an unbiased estimate is

∑
(Xi−X̄n)2

n−1
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Sufficient Statistics

• We have seen that M.L.E’s may not exist, or may not be unique. Where should our search

for other estimators start? A natural starting point is the set of sufficient statistics for the

sample.

• Suppose that in a specific estimation problem, two statisticians A and B would like to

estimate θ; A observes the realized values of X1, . . .Xn, while B only knows the value of a

certain statistic T = r(X1, . . . ,Xn).

• A can now choose any function of the observations (X1, . . . ,Xn) whereas B can choose only

functions of T . If B does just as well as A because the single function T has all the relevant

information in the sample for choosing a suitable θ, then T is a sufficient statistic.

In this case, given T = t, we can generate an alternative sample X′1 . . .X′n in accordance with this

conditional joint distribution (auxiliary randomization). Suppose A uses δ(X1 . . .Xn) as an

estimator. Well B could just use δ(X′1 . . .X′n), which has the same probability distribution as A′s

estimator.

Think about what such an auxiliary randomization would be for a Bernoulli sample.
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Neyman factorization and the Rao-Blackwell Theorem

Result (The Factorization Criterion (Fisher (1922) ; Neyman (1935)): Let (X1, . . . ,Xn) form a

random sample from either a continuous or discrete distribution for which the p.d.f. or the p.f. is f(x|θ),

where the value of θ is unknown and belongs to a given parameter space Ω. A statistic T = r(X1, . . . ,Xn) is a

sufficient statistic for θ if and only if, for all values of x = (x1, . . . ,xn) ∈ Rn and all values of θ ∈Ω,

fn(x|θ) of (X1, . . . ,Xn) can be factored as follows:

fn(x|θ) = u(x)v[r(x),θ]

The functions u and v are nonnegative; the function u may depend on x but does not depend on θ; and the

function v will depend on θ but depends on the observed value x only through the value of the statistic r(x).

Result: Rao-Blackwell Theorem: An estimator that is not a function of a sufficient statistic is dominated

by one that is (in terms of having a lower MSE )
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Sufficient Statistics: examples

Let (X1, . . . ,Xn) form a random sample from the distributions given below:

Poisson Distribution with unknown mean θ:

fn(x|θ) =

n∏
i=1

e−θθxi

xi!
=
( n∏
i=1

1

xi!

)
e−nθθy

where y =
n∑
i=1
xi. We observe that T =

n∑
i=1
Xi is a sufficient statistic for θ.

Normal distribution with known variance and unknown mean: The joint p.f. fn(x|θ) of X1, . . .Xn

has already been derived as:

fn(x|µ) =
1

(2πσ2)
n
2

exp
(
−

1

2σ2

n∑
i=1

x2
i

)
exp

( µ
σ2

n∑
i=1

xi−
nµ2

2σ2

)

The last term is v(r(x),θ), so once again, T =
n∑
i=1
Xi is a sufficient statistic for µ.
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Jointly Sufficient Statistics

If our parameter space is multi-dimensional, and often even when it is not, there may not

exist a single sufficient statistic T , but we may be able to find a set of statistics, T1 . . .Tk
which are jointly sufficient statistics for estimating our parameter.

The corresponding factorization criterion is now

fn(x|θ) = u(x)v[r1(x), . . .rk(x),θ]

Example: If both the mean and the variance of a normal distribution is unknown, the joint

p.d.f.

fn(x|µ) =
1

(2πσ2)
n
2

exp
(
−

1

2σ2

n∑
i=1

x2
i

)
exp

( µ
σ2

n∑
i=1

xi−
nµ2

2σ2

)
can be seen to depend on x only through the statistics T1 =

∑
Xi and T2 =

∑
X2
i. These are

therefore jointly sufficient statistics for µ and σ2.

If T1 . . . ,Tk are jointly sufficient for some parameter vector θ and the statistics T ′1 , . . .T ′k are

obtained from these by a one-to-one transformation, then T ′1 , . . .T ′k are also jointly sufficient.

So the sample mean and sample variance are also jointly sufficient in the above example,

since T ′1 = 1
nT1 and T ′2 = 1

nT2 −
1
n2 T

2
1
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Minimal Sufficient Statistics and Order Statistics

Definition (minimal sufficient statistic): A statistic T is a minimal sufficient statistic if T is a

sufficient statistic and every function of T which is a sufficient statistic is a one-to-one function of T .

Minimally sufficient statistics cannot be reduced further without destroying the property of

sufficiency. Minimal jointly sufficient statistics are defined in an analogous manner.

Definition (order statistics): Let Y1 denote the smallest value in the sample, Y2 the next smallest,

and so on, with Yn the largest value in the sample. We call Y1, . . .Yn the order statistics of a sample.

Order statistics are always jointly sufficient. To see this, note that the likelihood function is

given by

fn(x|θ) =

n∏
i=1

f(xi|θ)

Since the order of the terms in this product are irrelevant, we could as well write this

expression as

fn(x|θ) =

n∏
i=1

f(yi|θ).

For some distributions (such as the Cauchy) these (or a one-to-one function of them) are

the only jointly sufficient statistics and are therefore minimally jointly sufficient.

If a sufficient statistic r(x) exists, the MLE must be a function of this statistic (this follows

from the factorization criterion). It turns out that if MLE is a sufficient statistic, it is

minimally sufficient.
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Remarks

• Suppose we are picking a sample from a normal distribution, we may be tempted to use

Y(n+1)/2 as an estimate of the median m and Yn− Y1 as an estimate of the variance. Yet we

know that we would do better using the sample mean for m and the sample variance must

be a function of
∑
Xi and

∑
X2
i.

• A statistic is always sufficient with respect of a particular probability distribution, f(x|θ)

and may not be sufficient w.r.t. , say, g(x|θ). Instead of choosing functions of the sufficient

statistic we obtain in one case, we may want to find a robust estimator that does well for

many possible distributions.

• In non-parametric inference, we do not know the likelihood function, and so our estimators

are based on functions of the order statistics.
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