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Random Samples

We cannot usually look at the population as a whole because it would take too long, be too
expensive or impractical for other reasons (we crash cars to see know how sturdy they are)

We would like to choose a sample which is representative of the population or process that
interests us. A random sample is one in which all objects in the population have an equal chance
of being selected.

Definition (random sample): Let f(x) be the density function of a continuous random variable X. Consider
a sample of size . from this distribution. We can think of the first value drawn as a realization of the random
variable X1, similarly for Xo... Xn. (X15..-5Xn) s a random sample if f(X1y...9Xn) = f(x1)f(x2)...f(xn).

This is often hard to implement in practice unless we think through the possible pitfalls.

Example: We have a bag of sweets and chocolates of different types (eclairs, five-stars, gems...)

and want to estimate the average weight of a items in the bag. If we pass the bag around, each
student puts their hand in and picks 5 items and replaces these, how do you think these sample
averages would compare with the true average?

Now think about caveats when collecting a household sample to estimate consumption.
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Statistical Models

Definition (statistical model): A statistical model for a random sample consists of a parametric functional

form, f(x; @) together with a parameter space €2 which defines the potential candidates for ©.

Examples: We may specify that our sample comes from
e a Bernoulli distribution and Q ={p:p €[0,1]}
e a Normal distribution where Q = {(pn,02) : u € (—o0,00),0 >0}

Note that € could be much more restrictive. For example, we could have p € (%,1) in the first
case and u € (0,100) in the second case.

N /
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Estimators and Estimates

Definition (estimator): An estimator of the parameter ©, based on the random variables X1,...,Xn, is a
real-valued function 8 (Xi,...,Xn) which specifies the estimated value of © for each possible set of values of
X]_, ceey Xn .

Since an estimator &(Xi,...,X5) is a function of random variables, Xi,..., X, the estimator
is itself a random variable and its probability distribution can be derived from the joint
distribution of Xi,...,Xx.

A point estimate is a specific value of the estimator &(x1,...,Xn1) that is determined by using

the observed values x1,...,Xn.

There are lots of potential functions of the random sample, 6, what criteria should we use

to choose among these?
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Desirable Properties of Estimators

N

A Minimum Variance Unbiased Estimator (MVUE) is an estimator which has the smallest

variance among the class of unbiased estimators.

A Best Linear Unbiased Estimator (BLUE) is an estimator which has the smallest variance among
the class of linear unbiased estimators ( the estimates must be linear functions of sample values).

Unbiasedness : E(6,) =0V 0 € Q.
Consistency: limy_ P(|0, — 0|>€) =0 for every € > 0.

Minimum MSE: E(0, — 0)2 < E(0n — 0)2 for any O, .

Using the MISE criterion could lead us to choose biased estimators because

MSE(0)=Var(0) + Bias(6,0)?

MSE(O)=E(6—0)2=E[0—E(O)+E(6)—012=E[(6—E(0))2+(E(6)—0)2+2(0—E(0))(E(6)—0)]=Var(6)+Bias(6,0)2+0

/
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Maximum Likelihood Estimators

Definition (M.L.E.): Suppose that the random variables Xi,...,Xqn form a random sample from a discrete or
continuous distribution for which the p.f. or p.d.f is f(x|0), where © belongs to some parameter space £2. For
any observed vector X = (X1,...,Xn ), let the value of the joint p.f. or p.d.f. be denoted by fn (x|0). When
fn(x|0) is regarded a function of © for a given value of x, it is called the likelihood function.

For each possible observed vector x, let 8 (x) € £ denote a value of © € L for which the likelihood function
fn(x|0) is a maximum, and let 0 = 8(X) be the estimator of © defined in this way. The estimator 0 is called
the maximum likelihood estimator of © (M.L.E.).

For a given sample, & (x) is the mazimum likelihood estimate of © (also called M.L.E.)

N /
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M.L.E..of a Bernoulli parameter

e The Bernoulli density can be written as f(x;0) = 0*(1—0)!=%, x €/{0,1.

e For any observed values xi1,...,Xn, where each x; is either 0 or 1, the likelihood function is

n > X n—y) x;
given by: f,(x|0)=][0*% (1—0)*i =0"""(1—0) '
i=1

e The value of O that will maximize this will be the same as that which maximizes the log of

the likelihood function, L(0) which is given by:

n n
L(O) = (in) o + (n _ in) In(1—0)
i=1 i=1
(i xl) n_<£ x1>
The first order condition for an extreme point is given by: ‘:lé = lfé and solving
A PR
this, we get OpmrE = 17

Confirm that the second derivate of L(0) is in fact negative, so we do have a maximum.

N
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Sampling from a normal distribution

1 — (3 (=)
fn(x|y, o?) = me t=1
n n 1 <
L(u,0‘2)=—Eln(27t)—Eln(oj)—ﬁZ(xi—uﬂ
i=1

If the variance is known, we have to maximize this function w.r.t. u, and our first-order
n
condition is: #(Z Xi—nu) =0, so it =Xn.
i=1
If both the mean and variance are unknown, the likelihood function has to be maximized w.r.t.
both p and o? and we have two first-order conditions:

oL
B - oF (> (1)
i=1
oL n 1 9
ot el (e )
i=1

We obtain (I = X;; from setting g—h = 0 and substitute this into the second condition to obtain

=%Z _an

— -~ n —
The maximum likelihood estimators are therefore 1 = X;; and o2 = % > (Xi — Xn)% M.L.E’s in
i=1

\\general are not unbiased as seen here. /
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Sampling from a uniform distribution

Maximum likelihood estimators need not exist and when they do, they may not be unique as the

following examples illustrate:

If X4,...,X5 is a random sample from a uniform distribution on [0, 0], the likelihood function is
1
n(x30) = on

This is decreasing in 0 and is therefore maximized at the smallest admissible value of © which is
given by 6 = max(Xjy...Xn).

If instead, the support is (0,0 ) instead of [0,0], then no M.L.E. exists since the maximum sample

value is no longer an admissible candidate for ©.

If the random sample is from a uniform distribution on [0,0 + 1]. Now 0 could lie anywhere in
the interval [max(Xx1,...,Xn) — 1,min(X1,...,Xn )] and the method of maximum likelihood does not

provide us with a unique estimate.

Likelihood functions are often complicated and we use numerical optimization methods to

compute the M.L.E. (Gamma, Cauchy distributions)

N /
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Properties of Maximum Likelihood Estimators

N

Note:

Example: The MLE of the variance of a normally distributed variable is given by 62 i=1

h = = . Let’s rewrite
this and take its expectation:

R 1 1 1

< W2 2 v ) <2y _ L 2 onw2 <2\ _ * 2 _ %2
“Zl {2 X+ XE) = () XP—2X) Xi+ ) X =— () X|—mX?+nX*)= () X]—nX?)
1=
E[6%]1-E ZX2—nX2 ZE (X2) —nE(X%)] = 1[n(02+u2)—n(0—2+p.2)]=0'27n_1
n n n

X 2
Notice that nTL1E[6'%1] = 02 so an unbiased estimate is Z(Xi=Xn)?

Invariance: If © is the maximum likelihood estimator of 0, and g(©) is a one-to-one
function of 0, then g(é) is a maximum likelihood estimator of g(©)

Example: The sample mean and sample variance are the M.L.E.s of the mean and variance of a random
sample from a normal distribution so

the M.L.E. of the standard deviation is the square root of the sample variance

— the M.L.E of E(X?) is equal to the sample variance plus the square of the sample mean, i.e. since
E(X?) = 62 + u?, the M.L.E of E(X?) = 62 + 2

Comnsistency: If there exists a unique M.L.E. On of a parameter © for a sample of size n,
then plim én = 0.

MLEs are not, in general, unbiased.

n—1
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Sufficient Statistics

e We have seen that M.L.E’s may not exist, or may not be unique. Where should our search
for other estimators start? A natural starting point is the set of sufficient statistics for the
sample.

e Suppose that in a specific estimation problem, two statisticians A and B would like to
estimate O; A observes the realized values of X;,... X5, while B only knows the value of a
certain statistic T = r(Xq,...,Xqn).

e A can now choose any function of the observations (Xi,...,X5n) whereas B can choose only
functions of T. If B does just as well as A because the single function T has all the relevant
information in the sample for choosing a suitable 0, then T is a sufficient statistic.

In this case, given T =t, we can generate an alternative sample X/ ... X/, in accordance with this
conditional joint distribution (auxiliary randomization). Suppose A uses §(X;...X;n) as an
estimator. Well B could just use & (X]...X% ), which has the same probability distribution as A’s
estimator.

Think about what such an auxiliary randomization would be for a Bernoulli sample.

N /
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Neyman factorization and the Rao-Blackwell Theorem

Result (The Factorization Criterion (Fisher (1922) ; Neyman (1935)): Let (Xi,...,Xqn) form a
random sample from either a continuous or discrete distribution for which the p.d.f. or the p.f. is f(x]|0),
where the value of © is unknown and belongs to a given parameter space €. A statistic T =1r(Xq,...,Xn) is a

sufficient statistic for © if and only if, for all values of x = (X1,...,Xn) € R™ and all values of © € Q,
fn(x]10) of (X1,...,Xn) can be factored as follows:

fn(x10) = u(x)v[r(x), 0]

The functions U and v are nonnegative; the function u may depend on x but does not depend on ©; and the
function v will depend on © but depends on the observed value x only through the value of the statistic r(x).

Result: Rao-Blackwell Theorem: An estimator that is not a function of a sufficient statistic is dominated

by one that is (in terms of having a lower MSE )

N /
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Sufficient Statistics: examples

Let (Xi,...,Xn) form a random sample from the distributions given below:

Poisson Distribution with unknown mean O:

n

—0 oxj
fa(xl0) =T 7 = (

i=1 i

n

Hi)e—“eey
xi 1

i=1

1°

n n
where y = ) xi;. We observe that T =) X is a sufficient statistic for ©.

i=1 i=1

Normal distribution with known variance and unknown mean: The joint p.f. f,,(x|/0) of Xji,...

has already been derived as:

1 1 TR nu?
f X = —————F| € <—— XZ) e (_ X; — )
niXIe) = o o g L) o (G XX~ 5
n
The last term is v(1r(x),0), so once again, T = ) Xj; is a sufficient statistic for pu.
i=1

N
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Jointly Sufficient Statistics

If our parameter space is multi-dimensional, and often even when it is not, there may not
exist a single sufficient statistic T, but we may be able to find a set of statistics, T;... Ty
which are jointly sufficient statistics for estimating our parameter.

The corresponding factorization criterion is now
n(x[0) = u(x)v[ri(x),... Tk (x), 0]

Example: If both the mean and the variance of a normal distribution is unknown, the joint

p.d.f.
(2

1 1 <
P xlu) = oy e (=503 L xt) exe( o3 le 207)

i=1

can be seen to depend on x only through the statistics Ty =} Xj and T, = ) X}. These are
therefore jointly sufficient statistics for u and o?.

If Ty..., T are jointly sufficient for some parameter vector © and the statistics T{,... T, are
obtained from these by a one-to-one transformation, then T/,...T] are also jointly sufficient.

So the sample mean and sample variance are also jointly sufficient in the above example,
since T = %Tl and T, = %Tz - #Tf

N /
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Minimal Sufficient Statistics and Order Statistics

N

Definition (minimal sufficient statistic): A statistic T is a minimal sufficient statistic if T is a
sufficient statistic and every function of T which is a sufficient statistic is a one-to-one function of T.

Minimally sufficient statistics cannot be reduced further without destroying the property of
sufficiency. Minimal jointly sufficient statistics are defined in an analogous manner.

Definition (order statistics): Let Y; denote the smallest value in the sample, Yo the next smallest,
and so on, with Yn the largest value in the sample. We call Y1,...Yn the order statistics of a sample.

Order statistics are always jointly sufficient. To see this, note that the likelihood function is
given by

n

fn(x10) = [ [f(xi10)

i=1
Since the order of the terms in this product are irrelevant, we could as well write this
expression as

fn(x10) = [ [ f(yil0).
i=1

For some distributions (such as the Cauchy) these (or a one-to-one function of them) are
the only jointly sufficient statistics and are therefore minimally jointly sufficient.

If a sufficient statistic r(x) exists, the MLE must be a function of this statistic (this follows
from the factorization criterion). It turns out that if MLE is a sufficient statistic, it is

minimally sufficient. /

Page 14 Rohini Somanathan



Course 003: Basic Econometrics, 2017

Remarks

e Suppose we are picking a sample from a normal distribution, we may be tempted to use
Y(n+1)/2 as an estimate of the median m and Y, — Y; as an estimate of the variance. Yet we
know that we would do better using the sample mean for m and the sample variance must
be a function of ) X; and Y} X2.

e A statistic is always sufficient with respect of a particular probability distribution, f(x|0)
and may not be sufficient w.r.t. , say, g(x|0). Instead of choosing functions of the sufficient
statistic we obtain in one case, we may want to find a robust estimator that does well for

many possible distributions.

® In non-parametric inference, we do not know the likelihood function, and so our estimators

are based on functions of the order statistics.
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