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Sampling distributions of estimators

Since our estimators are statistics (particular functions of random variables), their

distribution can be derived from the joint distribution of X1 . . .Xn. It is called the sampling

distribution because it is based on the joint distribution of the random sample.

Given a sampling distribution, we can

– make appropriate trade-offs between sample size and precision of our estimator since

sampling distributions on sample size.

– obtain interval estimates rather than point estimates after we have a sample- an

interval estimate is a random interval such that the true parameter lies within this

interval with a given probability (say 95%).

– choose between to estimators- we can, for instance, calculate the mean-squared error of

the estimator, Eθ[(θ̂−θ)2] using the distribution of θ̂.
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Application: sample size and precision

Examples:

1. What if Xi ∼N(θ, 4), and we want E(X̄n−θ)2 ≤ .1? This is simply the variance of X̄n, and

we know X̄n ∼N(θ, 4/n).
4

n
≤ .1 if n≥ 40

2. Consider a random sample of size n from a Uniform distribution on [0,θ], and the statistic

U = max{X1, . . . ,Xn}. The CDF of U is given by:

F(X) =


0 if u≤ 0(
u
θ

)n
if 0 < u < θ

1 if u≥ θ

We can now use this to see how large our sample must be if we want a certain level of

precision in our estimate for θ. Suppose we want the probability that our estimate lies

within .1θ for any level of θ to be bigger than 0.95:

Pr(|U−θ|≤ .1θ) = Pr(θ−U≤ .1θ) = Pr(U≥ .9θ) = 1 − F(.9θ) = 1 − 0.9n

We want this to be bigger than 0.95, or 0.9n ≤ 0.05. With the LHS decreasing in n, we

choose n≥ log(.05)
log(.9) = 28.43. Our minimum sample size is therefore 29.
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Joint distribution of sample mean and sample variance

For a random sample from a normal distribution, we know that the M.L.E.s are the sample mean

and the sample variance 1
n

n∑
i=1

(Xi− X̄n)
2. We know that

X̄n ∼N(µ, σ
2

n ) and
n∑
i=1

(
Xi−µ
σ )2 ∼ χ2

n ( sum of squares of n standard normals)

If we replace the population mean µ with the sample mean X̄n, the resulting sum of

squares, has a χ2
n−1 distribution, which is independent of the distribution of X̄n. This is

stated formally below:

Theorem: If X1, . . .Xn form a random sample from a normal distribution with mean µ and variance σ2, then

the sample mean X̄n and the sample variance 1
n

n∑
i=1

(Xi− X̄n)
2 are independent random variables and

X̄n ∼N(µ,
σ2

n
)

n∑
i=1

(Xi− X̄n)
2

σ2
∼ χ2

n−1

Note: This is only for normal samples.
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Application: mean and variance estimates

We have a normal random sample and would like the M.L.E.s of the mean and standard

deviation to be within one-fifth of a standard deviation of the respective parameters, µ and σ

with some threshold probability.

Suppose we want to choose a sample size n such that Pr(|X̄n−µ|≤ 1
5σ)≥

1
2

If we use Chebyshev’s inequality, we get this probability is greater than 25
n , so setting

this equal to 1
2 , we have n = 50

Using the exact distribution of X̄n, Pr(|X̄n−µ|≤ 1
5σ) = Pr(

√
n

|X̄n−µ|
σ ≤ 1

5

√
n)

Since we now have a standard normal r.v., we know Pr(Z > .68) = .25, so we need the

smallest n greater than (.68 ∗ 5)2 = 11.6, so n = 12 (Stata 14: invnormal(.75)=.6745)

Now if we want to determine n so that Pr[(|X̄n−µ|≤ 1
5σ and (|σ̂n−σ|≤ 1

5σ]≥
1
2

By the previous theorem, X̄n and σ̂n are independent, so the LHS is the product

p1p2 = Pr(|X̄n−µ|≤ 1
5σ)Pr(|σ̂n−σ|≤ 1

5σ)

p1 = Pr(|Z|≤
√
n

5 ) = 1 − 2 ∗ (1 −Φ(
√
n

5 ).

p2 = Pr(.8σ < σ̂n < 1.2σ) = Pr(.64n <
nσ̂2
n

σ2 < 1.44n)

Since V = n
σ̂2
n
σ2 ∼ χ2

n−1, we can search over values of n to find one that gives us a

product of probabilities equal to 1
2 . For n = 21, p1 = .64 p2 = .79 so p1p2 = .5.

display chi2(20, 30.24)-chi2(20, 13.44)

(since 21*.64=13.44 and 21*1.44=30.24)
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The t-distribution

Let Z ∼N(0, 1), let Y ∼ χ2
v, and let Z and Y be independent random variables. Then

X =
Z√
Y
v

∼ tv

The p.d.f of the t-distribution is given by:

f(x;v) =
Γ( v+1

2 )

Γ( v2 )
√
πv

(
1 +

x2

v

)−(v+1
2 )

Features of the t-distribution:

One can see from the above density function that the t-density is symmetric with a

maximum value at x = 0.

The shape of the density is similar to that of the standard normal (bell-shaped) but with

fatter tails.
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Relation to random normal samples

RESULT 1: Define S2
n =

n∑
i=1

(Xi− X̄n)
2 The random variable

U =

√
n(Xn−µ)√

S2
n

n−1

∼ tn−1

Proof: We know that
√
n(Xn−µ)
σ ∼N(0, 1) and that

S2
n
σ2 ∼ χ2

n−1. Dividing the first random variable

by the square root of the second, divided by its degrees of freedom, the σ in the numerator and

denominator cancels to obtain U.

Implication: We cannot make statements about |X̄n−µ| using the normal distribution if σ2 is

unknown. This result allows us to use its estimate σ̂2 =
n∑
i=1

(Xi− X̄n)
2/n since

(Xn−µ)

σ̂/
√
n−1

∼ tn−1

RESULT 2 As n→∞, U−→ Z ∼N(0, 1)

To see why: U can be written as
√
n−1
n

√
n(Xn−µ)
σ̂ ∼ tn−1. As n gets large σ̂ gets very close to σ

and n−1
n is close to 1.

F−1(.55) = .129 for t10, .127 for t20 and .126 for the standard normal distribution. The differences

between these values increases for higher values of their distribution functions (why?)
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Confidence intervals for the mean

Given σ2, let us see how we can obtain an interval estimate for µ, i.e. an interval which is likely

to contain µ with a pre-specified probability.

Since
(Xn−µ)

σ/
√
n

∼N(0, 1), Pr
(
−2 <

(Xn−µ)

σ/
√
n
< 2
)
= .955

But this event is equivalent to the events − 2σ√
n
< Xn−µ < 2σ√

n
and Xn− 2σ√

n
< µ < Xn+ 2σ√

n

With known σ, each of the random variables Xn− 2σ√
n

and Xn+ 2σ√
n

are statistics.

Therefore, we have derived a random interval within which the population parameter lies

with probability .955, i.e.

Pr
(
Xn−

2σ
√
n
< µ < Xn+

2σ
√
n

)
= .955 = γ

Notice that there are many intervals for the same γ, this is the shortest one.

Now, given our sample, our statistics take particular values and the resulting interval either

contains or does not contain µ. We can therefore no longer talk about the probability that

it contains µ because the experiment has already been performed.

We say that (xn− 2σ√
n
< µ < xn+ 2σ√

n
) is a 95.5% confidence interval for µ. Alternatively, we

may say that µ lies in the above interval with confidence γ or that the above interval is a

confidence interval for µ with confidence coefficient γ
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Confidence Intervals for means..examples

Example 1: X1, . . . ,Xn forms a random sample from a normal distribution with unknown µ

and σ2 = 10. xn is found to be 7.164 with n = 40. An 80% confidence interval for the mean µ

is given by (7.164− 1.282
√

10
40), 7.164+ 1.282

√
10
40) or (6.523, 7.805). The confidence coefficient. is .8

(stata 14: display invnormal(.9)

Example 2: Let X denote the sample mean of a random sample of size 25 from a

distribution with variance 100 and mean µ. In this case, σ√
n

= 2 and, making use of the

central limit theorem the following statement is approximately true:

Pr
(
−1.96 <

(Xn−µ)

2
< 1.96

)
= .95 or Pr

(
Xn− 3.92 < µ < Xn+ 3.92

)
= .95

If the sample mean is given by xn = 67.53, an approximate 95% confidence interval for the

sample mean is given by (63.61, 71.45).

Example 3: Suppose we are interested in a confidence interval for the mean of a normal

distribution but do not know σ2. We know that
(Xn−µ)

σ̂/
√
n−1

∼ tn−1 and can use the

t-distribution with (n− 1) degrees of freedom to construct our interval estimate. With

n = 10, xn = 3.22, σ̂ = 1.17, a 95% confidence interval is given by

(3.22 −(2.262)(1.17)/
√

9, 3.22 +(2.262)(1.17)/
√

9) = (2.34, 4.10)

(display invt(9,.975) gives you 2.262)
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Confidence Intervals for differences in means

Let X1, . . . ,Xn and Y1, . . . ,Ym denote independent normal random samples.

Xi ∼N(µ1,σ2) and Yi ∼N(µ2,σ2) respectively. Sample means and variances are X̄, Ȳ , σ̂2
1, σ̂2

2.

We know (using previous results) that:

X̄ and Ȳ are normally and independently distributed with means µ1 and µ2 and

variances σ2

n and σ2

m

(X̄n− Ȳm) ∼N(µ1 −µ2, σ
2

n + σ2

m ) so
(X̄n−Ȳm)−(µ1−µ2)√

σ2
n +σ

2
m

∼N(0, 1)

nσ̂2
1

σ2 ∼ χ2
n−1 and

mσ̂2
2

σ2 ∼ χ2
m−1, so their sum (nσ̂2

1 +mσ̂
2
2)/σ

2 ∼ χ2
n+m−2. Therefore

U =
(X̄n− Ȳm)− (µ1 −µ2)√

nσ̂2
1+mσ̂

2
2

(n+m−2)

(
1
n + 1

m

) ∼ tn+m−2

Denote the denominator of U by R.

Suppose we want a 95% confidence interval for the difference in the means:

Using the above t-distribution, we find a number b for which Pr
(
−b < X < b

)
= .95

The random interval (X̄− Ȳ)−bR, (X̄− Ȳ)+bR will now contain the true difference in

means with 95% probability.

A confidence interval is now based on sample values, (x̄n− ȳm) and corresponding

sample variances.

Based on the CLT, we can use the same procedure even when our samples are not normal.
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