Delhi School of Economics

M.A. ECONOMICS SUMMER SEMESTER COURSE 002. INTRODUCTORY MATHEMATICAL ECONOMICS Midterm 1 12th September 2011

Instructions. Time: 70 minutes. Maximum Marks 15. Closed book closed notes exam. Attempt all the three questions. Five marks each. Some internal options are available.

1. Do the followings:

- (a) Find the matrix **P** that projects every vector \overrightarrow{b} in \mathbb{R}^3 onto the line in the direction of $\overrightarrow{a} = (2, 1, 3)$:
- (b) What are the column space and nullspace of **P** ? Describe them geometrically and also give a basis for each space.
- (c) What are all the eigenvectors of **P** and their corresponding eigenvalues? (You can use the geometry of projections, not a messy calculation.) The diagonal entries of **P** add up to _____.
- 2. (a) Let **S** be the standard basis of R^2 , and **B** be the basis {(1,4), (2,9)}. Let $T: R^2 \to R^2$ be the linear map defined by T(x, y) = (2x y, x 2y), for all $x, y \in R$. (i) Find the coordinates of each of the standard basis vectors in basis **B**. (ii) Find the matrix $[T]_{\mathbf{B}}$ for T relative to basis **B**.
 - (b) True or False (Explain your reasoning):
 (i) If {u₁, u₂} is linearly independent and {v₁, v₂} is linearly independent, then {u₁, u₂, v₁, v₂} is linearly independent.
 (ii) If {u₁, u₂} is a spanning set of V and {v₁, v₂} is another spanning set of V, then {u₁, u₂, v₁, v₂} is also a spanning set of V.?
- 3. (a) Assume that $V = U \oplus W$ for two subspaces U and W of V. Let $\{u_1, \ldots, u_m\}$ be a basis for U and let $\{w_1, \ldots, w_n\}$ be a basis for W. Prove that $\{u_1, \ldots, u_m, w_1, \ldots, w_n\}$ is a basis for V. (Hint: what do you know about dim $U \oplus W$?).
 - (b) Let $T : \mathbb{R}^n \to \mathbb{R}^k$ be a real matrix (not necessarily square). If the nullspace of T is $\{0\}$, show that the matrix T^*T is invertible and positive definite.

OR,

- a. Let $P_3(F)$ be a vector space of polynomials with coefficients in F and degree ≤ 3 , and let T: $P_3(F) \to P_3(F)$ be defined as T(f(x)) = f(x+1), for all $f(x) \in P_3(F)$ For example: $T(x^2 + x) = (x+1)^2 + (x+1)$
 - (i) T is a linear map.
 - (ii) Compute Mat(T; B) i.e. $[T]_B$ where B is basis $\{1, x, x^2, x^3\}$ of $P_3(F)$.
- b. Prove the statement: A set $X \subset \mathbb{R}^n$ is convex iff it contains any convex combination of vectors $x_1, \dots, x_m \in X$.