M.A. ECONOMICS SUMMER SEMESTER COURSE 002. INTRODUCTORY MATHEMATICAL ECONOMICS Final Examination

Maximum Marks: 70. Time Allowed: $2\frac{1}{2}$ hours.

Instructions. There are 3 parts to the question paper. Answer each part in a **separate** booklet. Answer 2 of the 3 questions each in **Parts I and II**. The single question in **Part III** is mandatory. Marks corresponding to each question are indicated at the end of the question.

PART I

(1) $P_n(F)$ is the vector space of all polynomials of degree $\leq n$ and with coefficients in F.

(a) Show that the map $T: P_3(F) \to P_4(F)$ defined by T(p(x)) = (x+1)p(x) is a linear map.

(b) Describe $\ker T$ and rangeT for the map T above.

(c) (unrelated to (a) and (b)). Let $b_1, ..., b_n$ be positive real numbers. Check that the form $\langle z, w_i \rangle = b_1 z_1 \overline{w}_1 + \cdots + b_n z_n \overline{w}_n$ defines an inner product on F^n , where $z = (z_1, ..., z_n)$ and $w = (w_1, ..., w_n)$.

(5, 4, 4)

(2)(a) Find a basis for the subspace $U = \{(x, y, z, w) \in \mathbb{R}^4 | x = y + z, y = x + w, z + w = 0\} \subseteq \mathbb{R}^4$. Justify your answer.

(b) What is the dimension of the subspace $U = \{(x_1, x_2, ..., x_n) \in F^n | x_1 + 2x_2 + \cdots + nx_n = 0\} \subseteq F^n$? Justify your answer by applying the rank-nullity theorem.

(c) In R^4 , let U=span(1,1,0,0), (1,1,1,2). Find $u\in U$ such that ||u-(1,2,3,4)|| is as small as possible. Use Gram-Schmidt method.

(4.5, 4.5, 4)

(3) Consider the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

(a) Find a change of basis matrix C[which] is a matrix of e-vectors] such that $C^{-1}AC$ is diagonal. What is this diagonal matrix?

(b) Compute A^{100} .

(c) The matrix $\begin{pmatrix} -2 & 11 \\ 4 & 2 \end{pmatrix}$ represents a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with respect to the basis $\{v_1, v_2\}$ where $v_1 = (3, 1)$ and $v_2 = (0, 2)$. Find the matrix of T with respect to the basis $\{w_1, w_2\}$ where $w_1 = (1, 1)$ and $w_2 = (-1, 1)$.

PART II

(4) Consider the following social welfare maximization problem in the setting of an economy with 2 consumers (1 and 2) and 2 goods (X and Y). Consumer 1's utility function is $U_1(x_1, y_1) = 6 + 0.4 \ln(x_1) + 0.6 \ln(x_2)$. Consumer 2's utility function is $U_2(x_2, y_2) = 8 + \ln(x_2) + \ln(y_2)$. The economy is endowed with 15 units of good X and 20 units of good Y. Social welfare, as a function of the 2 utility functions $U_1(x_1, y_1)$ and $U_2(x_2, y_2)$ is a weighted sum with weight 2 on the lesser of $U_1(x_1, y_1)$ and $U_2(x_2, y_2)$, and weight 1 on the greater of the two. Find an allocation (x_1, y_1, x_2, y_2) that maximizes this social welfare function subject to the constraints $x_1 + x_2 \leq 15$, $y_1 + y_2 \leq 20$. It is helpful to do this question, including dealing with the constraints, as simply as possible, to save time.

(15)

(5) The manager of a firm wishes to maximize the firm's revenue, subject to profits being at least as great as m. Specifically, the problem is to choose an output level y and advertising a to maximize revenue R(y,a) subject to the constraints

$$a \ge 0$$
 (1),
 $\Pi(y, a) \equiv R(y, a) - C(y) - a \ge m$ (2), and $y \ge 0$ (3).

The revenue function R(y, a) is C^1 , and $\partial R/\partial a > 0$ everywhere. The cost C(y) of producing y units of output is a C^1 function, and C'(y) > 0 everywhere.

Assume that (y^*, a^*) is an optimal solution, with $y^* > 0$, and that the constraint qualification holds.

- (a) Associate multipliers $\lambda_1, \lambda_2, \lambda_3$ with the 3 constraints above respectively, set up the Lagrangean and write down the Kuhn-Tucker first order conditions.
- (b) Using the Kuhn-Tucker conditions, show that $\Pi(y^*, a^*) = m$, that is, constraint (2) binds at the optimum.
- (c) Using the Kuhn-Tucker conditions, show that at the optimum, $\partial R/\partial y>0$ at the optimum.
- (d) Again using the Kuhn-Tucker conditions, show that $\partial \Pi/\partial y < 0$ at the optimum.

(5,3,3,4)

(6) (a) Does the system of equations $xz^{3} + y^{2}v^{4} = 2$ $xz + yvz^{2} = 2$ (2)

define v and z as C^1 functions of x and y around the solution point (v, z, x, y) = (1, 1, 1, 1)? If it does, evaluate $\partial v/\partial x$ and $\partial v/\partial y$ at this point.

(b) Let $S_1 = \{(x,y) \in R^2 | xy = 1\}$, $S_2 = \{(x,y) \in R^2 | xy = -1\}$. Let $S_1 + S_2 = \{(z_1, z_2) | z_1 = x_1 + x_2, z_2 = y_1 + y_2, \text{ for some } (x_1, y_1) \in S_1, (x_2, y_2) \in S_2\}$. Show that $S_1 + S_2$ is not closed. (8,7)

PART III

- (7) A firm must deliver an amount Y of a certain good at time T. The good can be produced continuously over the time interval [0, T], and the produced quantities are accumulated as inventory. Let q(t) denote the flow production and y(t) the stock of inventory at time t. Obviously, $\dot{y}(t) = q(t)$. Both production and holding of inventory are costly, and the flow cost at date t is given by $a[q(t)]^2 + by(t)$, where a, b > 0 are constants. The firm wants to minimize its total cost subject to meeting its delivery target, i.e., the inventory at date T must be equal to Y. The firm starts with no inventory at date 0. There is no discounting.
- (a) Formulate the above problem as an optimal control problem. Derive the first-order necessary conditions for an optimal path using Pontryagin's maximum principle.
- (b) Solve for the optimal production path q(t) and the optimal inventory accumulation path y(t).
- (c) Suppose the value of b increases from b_1 to b_2 . Let the corresponding optimal production paths be $q_1(t)$ and $q_2(t)$. Show that there is some cutoff date \hat{t} such that $q_1(t) \geq q_2(t)$ for $t \leq \hat{t}$ and $q_1(t) < q_2(t)$ for $t > \hat{t}$.

(5, 6, 3)