
Information Cascades Common Interest Voting

Issues in Economic Systems and Institutions:
Part IV: Information Aggregation

Parikshit Ghosh

Delhi School of Economics

March 11, 2013

Parikshit Ghosh Delhi School of Economics

Information Aggregation



Information Cascades Common Interest Voting

The Model

Madness of Crowds

�No one in this world, so far as I know, has ever lost money by
underestimating the intelligence of the great masses of the
common people.�
H. l. Mencken.

�[Physicians], like lemmings, episodically and with a blind,
infectious enthusiasm, push certain diseases and treatments
primarily because everyone else is doing the same.�
John Burnum, New England Journal of Medicine.

�If the blind lead the blind, both shall fall into the ditch.�
Matthew 15:14.
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The Model

The Dutch Tulip Mania

I The Viceroy: a prized tulip.
I Cost of a bulb in 1637: 3,000 �4,200 guilders.
I Skilled artisan�s annual salary: 300 guilders.
I You could buy a house with the price of a bulb.
I Futures contracts traded. Often, the bulbs didn�t even exist
physically.

Parikshit Ghosh Delhi School of Economics

Information Aggregation



Information Cascades Common Interest Voting

The Model

The Dutch Tulip Mania

Parikshit Ghosh Delhi School of Economics

Information Aggregation



Information Cascades Common Interest Voting

The Model

A Simple Investment Model (Bikhchandani et al 1992)
I Investors 1, 2, 3... sequentially decide whether to invest
(a = I ) or not (a = N).

I State-of-the-world θ is the net return from investment.
θ 2 f�1, 1g. Pr[θ = 1] = 1

2 .
I Each investor receives a conditionally independent private
signal s 2 fH, Lg, with probabilities:

s = H s = L
θ = 1 p 1� p

θ = �1 1� p p

I Investors observe previous players�actions, but not signals.
I Investor t�s strategy is a mapping from histories
ht = (a1a2...at�1) and private signals fH, Lg to fI ,Ng.

Parikshit Ghosh Delhi School of Economics

Information Aggregation
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The Model

Benchmark: Observable Signals

I Posterior on high return after one H signal:

λ =
1
2p

1
2p +

1
2 (1� p)

= p

I Posterior on high return after one L signal:

λ =
1
2 (1� p)

1
2p +

1
2 (1� p)

= 1� p
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The Model

Benchmark: Observable Signals

I Posterior on high return after HL signal:

λ =
1
2p(1� p)

1
2p(1� p) +

1
2 (1� p)p

=
1
2

I Posterior on high return after k more H signals than L:

λ =
pk

pk + (1� p)k
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The Model

Observable Signals in Pictures
Posterior Beliefs:

Prior = ½

Don’t invest Invest

0 1
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Information Cascades Common Interest Voting

The Model

Learning When Signals Are Observable

I If θ = 1, after enough periods, a majority of the signals will
almost surely be H (law of large numbers).

I Beliefs will almost surely put nearly all the weight on the true
state and almost all agents will take the right decision.

I There is �herding�but no �informational cascade�, i.e.
decisions are still sensitive to arrival of fresh information.

I All decisions are e¢ cient, given the information.
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Information Cascades Common Interest Voting

The Model

Observable Actions

I Exp. return from investment: λ.1+ (1� λ)(�1) = 2λ� 1.
I Invest if λ > 1

2 , don�t invest if λ < 1
2 and toss a coin if λ = 1

2 .
I Investor 1: a(H) = I and a(L) = N.
I Investor 2: can infer 1�s information from his action

a(I ,H) = a(HH) = I

a(N, L) = a(LL) = N

a(I , L) = a(N,H) = a(HL) =
�
1
2
� I , 1

2
�N

�
I Investor 2 is in�uenced by investor 1, but does not blindly
mimic her.
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The Model

The Third and Fourth Investors
I Posterior beliefs (after observing both predecessors invest):

λ(II ,H) = λ(HIH)

=
p2
�
p + 1

2 (1� p)
�

p2
�
p + 1

2 (1� p)
�
+ (1� p)2

�
1� p + 1

2p
� > 1

2

λ(II , L) = λ(HIL) >
1
2

=
p(1� p)

�
p + 1

2 (1� p)
�

p(1� p)
�
p + 1

2 (1� p)
�
+ (1� p)p

�
1� p + 1

2p
�

I If the �rst two players invest, the third will mimic them
regardless of her private information (H or L)!

I Same if the �rst two players both do not invest.
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The Model

The Third Investor

I Investor 4 learns nothing about investor 3�s private signal from
her action.

I If the two predecessors take opposite actions, player 3 is in the
same position as player 1:

λ(IN,H) = λ(NI ,H) = λ(HLH) = λ(H) = p

λ(IN, L) = λ(NI , L) = λ(HLL) = λ(L) = 1� p

I Opposite actions reveal contradictory signals and therefore
�cancel out� each other.

I If player 3 is in the same position as player 1, player 4 is in the
same position as player 2.
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Information Cascades Common Interest Voting

Properties

Cascade After Two Rounds
I As long as decisions alternate, the next player�s decision
depends on her private information.

I As soon as two successive decisions are the same, all
subsequent actions mimic them (cascade).

I After two rounds:

Pr[correct cascade] = p
�
p +

1
2
(1� p)

�
=
1
2
p(1+ p)

Pr[incorrect cascade] = (1�p)
�
1� p + 1

2
p
�
=
1
2
(1�p)(2�p)

Pr[no cascade] = p(1� p)
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Information Cascades Common Interest Voting

Properties

Long Run Probabilities

I After n rounds (let x = p(1� p)):

Pr[cascade] = (1� x) + x(1� x) + x2(1� x) + ...
! 1 as n! ∞

I Other asymptotic probabilities (n! ∞):

Pr[correct cascade] =
p(1+ p)

2(1� p + p2)

Pr[incorrect cascade] =
(1� p)(2� p)
2(1� p + p2)
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Information Cascades Common Interest Voting

Properties

Numerical Examples

p Pr cascade (2 rounds) Pr Cascade (long run)
Right Wrong Right Wrong

� 0.5 0.375 0.375 0.5 0.5
0.7 0.595 0.195 0.753 0.247
0.9 0.855 0.055 0.940 0.060
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Information Cascades Common Interest Voting

Properties

Examples

I Michael Reacy and Fred Wiersema secretly purchased 50,000
copies of their book The Discipline of Market Leaders.

I Hanson and Putler (1996) in�ated download statistics for
game software on AOL�s site.

I In U.S primaries, early states like Iowa and New Hampshire
are supposed to have disproportionate in�uence.

I Medical fads: tonsillectomy (no tangible bene�ts,
idiosyncratic regional variations).

I Scienti�c consensus: are you sure the earth is round, not �at?
I Popular restaurants don�t raise prices; IPOs are underpriced.
I Crime rates show large regional variations, even after
controlling for income, race, etc.
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Information Cascades Common Interest Voting

Properties

Further Observations

I Fashion leaders: if investor 1 has precision p1 > p, then
everyone follows what she did (cascade with probability 1).

I Later players better o¤ if the leader (investor 1) is less well
informed (p1 < p).

I Public release of information (e.g. product information or
disease advisory) may make everyone worse o¤ by
precipitating a herd.

I Cascades are fragile (fads) because they are based on very
little information. A small amount of new information, or drift
in the state, can completely overturn a cascade.

I If timing is endogenous, there are often long periods of waiting
followed by an avalanche of investments (booms and crashes).
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Statistical Jury Theorem

Condorcet Jury Theorem

1. The decision of a jury will be correct more often than the
decision of any single individual.

2. The decision of a jury is correct with probability approaching
1 a the size of the jury grows to in�nity.

I Conditions apply for the conclusions to hold.
I Can apply to various voting rules: majority, super-majority
and unanimity.

I Statistical versus strategic jury theorems: di¤erent
assumptions about voting behaviour.

I No communication: voters�interim preferences di¤er due to
di¤erential private information, not con�icting interests.
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Information Cascades Common Interest Voting

Statistical Jury Theorem

Statistical Jury Theorem
I State of the world (s) = guilty (G ) or innocent (I ).
I Decision (d) = convict (C ) or acquit (A).
I Correct decision: C when G , A when I .
I Voters 1, 2, 3..., n. Probability of j voting correctly =
pj 2 [ 12 , 1]. Probabilities are independent.

I Voting rule = α 2 [ 12 , 1] (minimum fraction of votes needed
for a decision).

I Let xj = 1 when j�s vote is correct; xj = 0 when wrong.
I Probability that the jury�s decision is correct:

P(n, α) = Pr

"
X =

n

∑
j=1
xj � αn

#
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Statistical Jury Theorem

Statistical Jury Theorem
Theorem
Assume pj = p for all j . Then
(1) If p > α, then there exists N such that for all n > N,
P(n, α) > p and limn!∞ P(n, α) = 1.
(2) If p � α, then there exists N such that for all n > N,
P(n, α) < p and limn!∞ P(n, α) = 0.

I Under majority rule, the jury theorems hold whenever
individual voters can do even slightly better than chance.

I Under super-majority rule, individual voters must be
su¢ ciently accurate for the theorems to be valid.

I The ex ante probability of a decision (e.g., conviction) or an
error (e.g., convicting the innocent) is lower the higher is the
number of votes needed.
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Statistical Jury Theorem

Proof
I By the Weak Law of Large Numbers, 8ε, δ > 0, 9N(ε) such
that for all n > N(ε)

Pr
�����Xn � p

���� > δ

�
< ε

I Put δ = p � α and ε = 1� p:

Pr
�
p � X

n
> p � α

�
< 1� p

or 1� Pr
�
X
n
< α

�
= P(n, α) > p

I Put δ = p � α. For any ε > 0:

Pr
�
X
n
< α

�
< ε ) P(n, α)! 1 as n! ∞

Parikshit Ghosh Delhi School of Economics

Information Aggregation



Information Cascades Common Interest Voting

Statistical Jury Theorem

Increasing Jury Size

0 1 Correct
vote propn½ p
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Strategic Voting

A Model of Rational Voters

I Voter preferences:

u(s, d) =

8<:
�q if s = I , d = C ,
�(1� q) if s = G , d = A,
0 otherwise,

where q 2 (0, 1).
I q is the �threshold of doubt�: C is optimal i¤ the voter
believes there is a greater than q chance the state is G .

I Let prior on �guilt�= π.
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Strategic Voting

A Model of Rational Voters

I Voter private information: conditionally independent private
signal tj 2 fg , ig, with distribution

g i
G pG 1� pG
I 1� pI pI

I Signals are informative: pG 6= 1� pI .
I Voters cannot communicate; they must vote independently.
I Since there is common interest, the game with communication
is trivial: voters have the incentive to share their signals
truthfully.
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Strategic Voting

Strategies

I Mappings from signal to vote: v : fg , ig ! ∆fC ,Ag.
I A strategy is informative if v(g) = C and v(i) = A.
I A strategy is responsive if v(g) 6= v(i).
I A strategy is sincere if it is the same way the juror would
have voted if she were making the decision alone (n = 1).
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Strategic Voting

An Example
I Two voters or one
I Threshold of doubt: q = 1

2
I Prior on G = π = 2

3
I Signal accuracy: p = 3

4

A Judge (n = 1)

I Pr (G jg) = πp
πp+(1�π)(1�p) =

6
7 >

1
2

I Pr(G ji) = π(1�p)
π(1�p)+(1�π)p =

2
5 <

1
2

I Optimal decision is informative: v(g) = C and v(i) = A
I Expected payo¤ = � 1

2 .
1
4 = �0.125
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Strategic Voting

Jury of Two

I Assume unanimity required for C , otherwise A
I Expected payo¤:

�1
2
[π(1� p2) + (1� π)(1� p)2] = �0.15625

I But sincere voting is not a Nash equilibrium
I Assume sincere voting. Then

Pr(G jpiv , i) = Pr(G jg , i) = 2
3
<
1
2

I Voter receiving i signal will want to deviate and vote for C
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Strategic Voting

Symmetric Mixed Equilibrium
I Let v(g) = 1 and v(i) = σ

Pr(G jpiv) =
π [p + (1� p)σ]

π [p + (1� p)σ] + (1� π) [pσ+ 1� p]

=
6+ 2σ

7+ 5σ
= λ

Pr(G jpiv , i) =
λ(1� p)

λ(1� p) + (1� λ)p

=
λ

3� 2λ

I Indi¤erence ) λ
3�2λ =

1
2 ) λ = 3

4 ) σ = 3
7
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Strategic Voting

Symmetric Mixed Equilibrium

I Error probabilities:
I In state G : 1�

�
p2 + 2p(1� p)σ+ (1� p)2σ2

�
= 13

49
I In state I : (1� p)2 + 2p(1� p)σ+ p2σ2 = 16

49

I Expected payo¤ = � 1
2 .
� 2
3 .
13
49 +

1
3 .
16
49

�
= �0.143 < 0.125

I Jury still does worse than judge, even with sophisticated voters
I Is this adverse consequence a result of equilibrium selection?
I Another equilibrium: both voters vote for A regardless of their
signal. Since neither is pivotal, best response property is not
violated!

I Is there a better equilibrium than all of these?
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Strategic Voting

Asymmetric Pure Equilibrium

I Voter 1 votes for C regardless of signal
I Voter 2 votes sincerely
I Since voter 2 is always pivotal, he is e¤ectively a judge. Hence
sincere and informative voting is a best response for voter 2.

I Checking best response property for voter 1:

Pr(G jpiv , i) = Pr(G jg , i) = π =
2
3
<
1
2

I The equilibrium mimics trial by judge (n = 1)
I Expected payo¤ = �0.125
I Jury does no worse than judge under this equilibrium selection.
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Strategic Voting

Full Information and Sincere Voting

I If all the signals were known, posterior belief:

Pr[s = G j#g signals is k ] = πpkG (1� pG )n�k

πpkG (1� pG )n�k + (1� π)(1� pI )kpn�kI

=
1

1+ 1�π
π

h
1�pI
pG

ik h pI
1�pG

in�k
I There is a critical number of g signals, k�, such that the
posterior is λ or higher i¤ k � k�.

Theorem
If pI = pG , sincere voting is informative and rational i¤ the
minimum number of votes needed for conviction is exactly k�.
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Strategic Voting

Inferiority of Unanimous Verdicts (Feddersen and
Pesendorfer 1997)

I Under sincere voting, raising the minimum votes needed for
conviction lowers the probability of wrongful conviction.

I Under strategic voting, both error probabilities may go up.
I Relies on the information content of the event: �the voter is
pivotal�. A vote matters only in this case.

I Under unanimity, being pivotal is a strong signal in favour of
guilt (everyone else has voted for conviction!). This makes
voters more inclined to vote for conviction.

I The greater willingness to convict may dominate the e¤ect of
more votes needed for conviction.

I Under unanimity, error probabilities remain bounded away
from zero even as jury size goes to in�nity. Under any
�interior rule�, error they approach zero.
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Strategic Voting

Symmetric Mixed Equilibria
I Let π = 1

2 and pG = pI = p.
I Let σ(g), σ(i) be probability of voting for C when signal is
and, i respectively.

I An equilibrium is responsive if σ�(g) 6= σ�(i).
I Probabilities of voting for C :

γG = pσ(g) + (1� p)σ(i)
γI = (1� p)σ(g) + pσ(i)

I Since posterior after a g signal > posterior after an i signal,

σ(g) 2 (0, 1)) σ(i) = 0

σ(i) 2 (0, 1)) σ(g) = 1
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Strategic Voting

Mixed Equilibrium: Type 1
I σ�(g) = 1 and σ�(i) = 0.
I Arises if

pαn�1(1� p)(1�α)n+1

pαn�1(1� p)(1�α)n+1 + (1� p)αn�1p(1�α)n+1| {z } � q

Pr(G jpiv , i) � doubt threshold

I and

pαn(1� p)(1�α)n

pαn(1� p)(1�α)n + (1� p)αnp(1�α)n| {z } � q

Pr(G jpiv , g) � doubt threshold
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Strategic Voting

Mixed Equilibrium: Type 2
I σ�(g) = 1 and σ�(i) = σ.
I Indi¤erence after signal i implies:

(1� p)γαn�1
G (1� γG )

(1�α)n

(1� p)γαn�1
G (1� γG )

(1�α)n + pγαn�1
I (1� γI )

(1�α)n
= q

I Use
γG = p + (1� p)σ; γI = pσ+ (1� p)

I On solving:

σ(i) =
p(1+ f )� 1
p � f (1� p)

where f =

�
1� q
q

� 1
αn�1

�
1� p
p

� (1�α)n+1
αn�1
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Strategic Voting

Mixed Equilibrium: Type 3
I σ�(g) = σ and σ�(i) = 0.
I Indi¤erence after signal g implies:

pγαn�1
G (1� γG )

(1�α)n

pγαn�1
G (1� γG )

(1�α)n + (1� p)γαn�1
I (1� γI )

(1�α)n
= q

I Use
γG = p + (1� p)σ; γI = pσ+ (1� p)

I On solving:

σ(g) =
h� 1

p(h+ 1)� 1

where h =

�
1� q
q

� 1
(1�α)n

�
1� p
p

� αn
(1�α)n
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Strategic Voting

Interior Rules

Theorem
Suppose α 2 (0, 1). (1) There is n such that for all n � n, there is
a symmetric responsive equilibrium. (2) For symmetric, responsive
equilibria

lim
n!∞

Pr(C jI ) = lim
n!∞

Pr(AjG ) = 0

I Both error probabilities (convicting the innocent and
acquitting the guilty) vanish as the size of the jury becomes
very large.

I Note that any interior rule has this property.
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Information Cascades Common Interest Voting

Strategic Voting

Interior Rules

I Limit expressions for mixtures:

lim
n!∞

σ(i) =

p
�
1+

�
1�p
p

� 1�α
α

�
� 1

p �
�
1�p
p

� 1�α
α
(1� p)

2 (0, 1)

lim
n!∞

σ(g) =

�
1�p
p

� α
1�α � 1

p
��

1�p
p

� α
1�α
+ 1

�
� 1

2 (0, 1)

I East to check the theorem holds.
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Information Cascades Common Interest Voting

Strategic Voting

Outline of Proof

I As n! ∞, the following holds:

γI < α < γG

I By the Law of Large Numbers, for large n, the proportion of
votes for C is γG (when guilty) and γI (when innocent).

I Hence, almost surely, the decision is C (when guilty) and A
(when innocent).

I For most voting rules, Condorcet�s conclusions are valid.
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Information Cascades Common Interest Voting

Strategic Voting

Unanimity Rule

Theorem
Under unanimity rule, if the defendant is convicted with strictly
positive probability, then Pr(I jC ) is bounded below by

min
�
1
2
,

(1� q)(1� p)2
(1� p)2 + q(2p � 1)

�
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Information Cascades Common Interest Voting

Strategic Voting

Unanimity Rule

Theorem
Assume condition 1 and q > 1� p. Under unanimity rule, there is
a unique responsive symmetric equilibrium with the limiting
properties:

lim
n!∞

σ(i) = 1

lim
n!∞

Pr(C jI ) > 0

lim
n!∞

Pr(AjG ) > 0
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