Green Growth, Climate Change and India

Prof. Charles Kolstad SIEPR, Stanford University 23 August 2013

Green Growth

- A bit like sustainability difficult to define
- What is it?
 - Toman (2012): Is it simply a reminder to move toward intertemporal efficiency, a la literature of 1970s?
 - Hallegatte et al (2011): Growth that ensures that natural assets continue to provide services to us
 - UNEP (2011): economy which provides enhanced wellbeing, social equity and reduced env risks
- Two basic economic interpretations (Toman, 2012)
 - Fix externalities and market failures, nothing more
 - Exploit synergies between growth policies and environmental policies (eg, reducing subsidies to fossil fuels addresses both issues)

Green Ramsey Model

Toman (2012), Smulders and Withagen (2012)

- Two states: Env (Z) and capital (K)
- Two controls: Extraction of env (E), investment (I)
- Max NPV of aggregate per period utility, u(C,Z), such that
 - Y=f(A,K,L,E,Z), with A as technology, L labour
 - Y=C+I+πE
 - $dK/dt = -\delta K + I$
 - dZ/dt = -H(E) + R(Z)
 - Where H is how E depletes Z and R is regeneration of Z
- Implications
 - Higher initial K \rightarrow allows reduced depletion of Z
 - If H(E) can be reduced through innovation and policies, get more growth with less depletion of environment
- Empicial implementation difficult

Today's talk

- Main goal: confront question of empirical implementation of Ramsey green growth model for climate
- Ultimate questions: How much mitigation, when, by whom?
- Identify economics research questions along the way
- At the end: address implications for India
- 1. Brief facts on climate change
- 2. Identify issues in empirically implementing Ramsey
- 3. Walk through these issues, identifying some of what is known and some of what is not known
- 4. Remarks as an outsider on India's perspective

CC Primer: in one slide

- How does it work?
 - Earth's temperature is an equilibrium balance between incoming radiation from the sun, which warms the earth, and outgoing infrared radiation (heat) from the warmed earth, which cools us
 - Greenhouse gases make the atmosphere more opaque to outgoing infrared → with more GHG, earth gets warmer in order to reestablish equilibrium balance
- CO2 main greenhouse gas (but others too)
- Most greenhouse gases have same global effect, no matter where emitted—mitigation is pure public good.
- Greenhouse gases in the atmosphere (mostly CO2) have fluctuated throughout history but have risen dramatically in last century
- Current atmospheric load from past emissions, primarily from developed economics (eg, USA, EU and SU)
- China currently top emitter in aggregate; US top emitter per capita

GHG Atmospheric Concentrations

Issues facing societies

- What amount of mitigation (reduction in GHG) should be pursued by whom, when at whose expense?
 - Mitigation (or GHG emissions) a pure public good
 - Mechanisms needed to avoid free riding
 - Regulations needed to implement societal goals
 - International agreements may be needed -- difficult
- Same question for adaptation
 - Adaptation more of a private good
 - Market failures (eg, incomplete capital markets) generate insufficient adaptation
- Is geoengineering a viable/desirable way of coping with problem?

Empirical Green Ramsey Model: Standard Neoclassical Approach

- 1. Production function--Estimate cost of mitigation curve by industry, country and internationally: mitigation as a function of carbon price; include co-benefits of mitigation, if any [ie, how E enters f]
 - Rebound effect dilutes mitigation potential
 - Co-benefits of mitigation may or may not change mitigation costs
- 2. Estimate connection between emissions and impacts;
- 3. Determine individual WTP for avoided impacts around world
 - Enters production function and utility function
- 4. Aggregate WTP to avoid impacts, generating aggregate damage function (will of course depend on income distribution; may need to be weighted)
- 5. Integrate induced technical change into costs at different points in time
- 6. Use discounting to aggregate benefits and costs intertemporally
- 7. SOLVE:
 - Determine trajectory of emissions which balances marginal mitigation costs with marginal damage intertemporally
 - Determine regulations which can support trajectory
- This is the approach of Bill Nordhaus, using DICE
- Problems are largely big issues for non-economists

Problems: Cost of Mitigation

- Estimating micro-level costs controversial
 - Existence of negative cost mitigation opportunities?
 - Co-benefits reduce effective cost of mitigation
 - Innovation—how will it proceed?

Are negative abatement costs plausible?

- Aggregate social costs may well be negative
 - Market failures, externalities and existing distortions
- Private abatement costs tougher to argue as negative
- Firms/consumers have insufficient info on mitigation opportunites → misoptimize
 - Information asymmetric or split incentives eg landlord/tenant
 - Credit markets imperfect in financing such investments
- Empirical evidence (eg, Allcott and Greenstone, 2011, JEP)
 - Engineering estimates—overestimate opportunities
 - Typically omit costs; also only examine adopters selection bias
 - Anderson and Newell (2004)—examined audit program and found extra costs not uncovered by engineering analysis of conservation
 - Actual energy conservation programs show returns similar to market returns (Joskow and Marron, 1992; Arimura et al, 2011)
 - Actual consumer behavior (eg, Hausman, 1979; Allcott & Wozny, 2013) show high discount rates and evidence of misoptimization
- Conclusion: even estimating private mitigation costs difficult. Ripe area for further empirical research.

Co-benefits: What are they? Valid?

- Assume welfare, V, affected by multiple social objectives, z₁,...z_m (1st n climate rest other)
- Assume one climate policy, p₁
- Welfare change: $dV = \sum_{i} \{ (dV/dz_i) (dz_i/dp_1) \} dp_1 \}$
- Components co-benefits (dz_i/dp₁)
- Note: Envelope theorem tells us if some components at optimum, (dV/dz_i = 0) → social value of cobenefits zero
- Eg, climate and sulfur emissions

Induced Technical Change & Rebound

- Technical change expected to play an important role in reducing mitigation costs
 - How to represent induced technical change? Autonomous technical change?
- Rebound dilutes impact of technical change
 - Innovation: more energy efficient car
 - Rebound
 - Direct price of use drops
 - Indirect—effective income increases
 - Economy-wide rebound—price of energy may drop
- Intellectual property regimes impede the transfer of new technology to developing countries

Damage—WTP to avoid change

- Damage is WTP to avoid impact from a change in the climate
- First step: convert temperature change into physical impacts
- Second step: convert physical impacts into WTP to avoid impacts
- Third step: aggregate impacts over time and individuals

Estimates of Aggregate Damage

degree centigrade

Aggregation of Damage across space

- Problem: aggregating across individuals/countries with vastly different income levels (David Pearce)
- Illustrate: Dreze (1998)
 - Problem: invest fixed amount in pollution control in Delhi area
 - How to aggregate benefits across income levels
- Welfare weights reflect prioritarian ethics
- What weights?
 - No unequivocal positive answer
 - How about 1/VSL?

Aggregating Across Time: Positive discounting

	Government Bills (maturity <1 year)		Government Bonds (maturity =10 years)		Equity	
	1900-2006	1971-2006	1900-2006	1971-2006	1900-2006	1971-2006
Australia	0.6%	2.5%	1.3%	2.8%	7.8%	6.3%
France	-2.9%	1.2%	-0.3%	6.6%	3.7%	7.8%
Japan	-2.0%	0.4%	-1.3%	3.9%	4.5%	5.0%
United Kingdom	1.0%	1.9%	1.3%	3.9%	5.6%	7.1%
USA	1.0%	1.3%	1.9%	4.0%	6.6%	6.6%

Source: Gollier, 2012

- Appropriate for climate investments which displace capital
- Markets may give poor signals for some climate investments
 - Term of investments; incompleteness of market

Aggregating Across Time: Normative

• Ramsey rule:

 $\rho_t = \delta + \eta g_t$

• Extended Ramsey Rule (Gollier):

 $\rho_t = \delta + \eta g_t - 0.5 \eta (\eta + 1) s_t^2$

Calibration of Ramsey Rule

Author	Rate of pure preference for present	Inequality aversion	Growth rate	Implied social discount rate
Cline (1992)	0%	1.5	1%	1.5%
IPCC AR2 WGIII	0%	1.5-2	1.6% - 8%	2.4% - 16%
Arrow (1996)	0%	2	2%	4%
UK: Green Book (HM Treasury, 2003)	1.5%	1	2%	3.5%*
US OMB (2003)**				3% - 7%
France: Rapport Lebègue (2005)	0%	2	2%	4%*
Stern (2007)	0.1%	1	1.3%	1.4%
Arrow (2007)		2-3		
Dasgupta (2007)	0.1%	2-4		
Weitzman (2007b)(2007)(2007a)	2%	2	2%	6%
Nordhaus (2008)	1%	2	2%	5%

Application of Ramsey Rule

		g	σ	Discount rate		
	Country			Ramsey rule Error!	Extended Ramsey rule	
				Reference source	Error! Reference	
				not found.	source not found.	
Developed countries	United States	1.74%	2.11%	3.48%	3.35%	
	United Kingdom	1.86%	2.18%	3.72%	3.58%	
	Japan	2.34%	2.61%	4.68%	4.48%	
	China	7.60%	3.53%	15.20%	14.83%	
	India	3.34%	3.03%	6.68%	6.40%	
	Russia	1.54%	5.59%	3.08%	2.14%	
Africa	Gabon	1.29%	9.63%	2.58%	-0.20%	
	Zaire (RDC)	-2.76%	5.31%	-5.52%	-6.37%	
	Zambia	-0.69%	4.01%	-1.38%	-1.86%	
	Zimbabwe	-0.26%	6.50%	-0.52%	-1.79%	

How much mitigation?

- Issues leave many unanswered questions
- Some argue for aggressive mitigation (eg, Stern), mostly relying on very low discount rates
- Others argue for modest (but non-zero) mitigation (eg, Nordhaus)

Who Mitigates? Who Pays?

- Who mitigates is an economic question
 - Cost minimization calls for mitigation to equalize marginal costs
- Who pays?
 - Largely ethical/normative question
 - Is there historic responsibility?
 - What role for current income?
- Coordination/Cooperation
 - Is cooperation needed yes, for first best
 - Cooperation generally among countries, not individuals

Economics of Cooperation

- International Environmental Agreements
 - N-person two stage games: cooperate then mitigate
 - Literature somewhat pessimistic
 - Large agreements only form when gains are low
 - Typically very small agreements (few countries)
 - Experiments yield more cooperation than Nash
- Role of Fairness
 - Fairness seems to promote cooperation among countries
 - Fairness and cooperation in economics mostly experimental
 - Fairness concerns promote cooperation among individuals

Example: Self-interest vs Efficiency

Prisoner's Dilemma: Defection Individually Rational

	B Cooperates	B Defects
A Cooperates	(x,x)	(1,7)
A Defects	(7,1)	(2,2)

Note: With payoff (a,b), a is payoff to player A and b is payoff to player B; 2<x<7; from Charness et al, 2008

Example: Self-interest vs Efficiency

<u>Cooperation rates: x=4, 15%; x=5, 45%; x=6, 70%</u>

	B Cooperates	B Defects
A Cooperates	(x,x)	(1,7)
A Defects	(7,1)	(2,2)

Note: With payoff (a,b), a is payoff to player A and b is payoff to player B; 2<x<7; from Charness et al, 2008

Cooperation in Public Goods Games

- Theory Bergstrom et al (1986)
 - Max U(x_i , G) s.t. $x_i + g_i = w_i$.
 - Identical preferences but but different wealth levels
 - Some but not much p.g. provision in Nash equilibrium: mostly free riding
 - Andreoni: as size of economy grows, aggregate contributions to public good approach non-zero limit and fraction contributing go to zero – inconsistent with US data on contributions.
- Experiments
 - Kim and Walker (1984), Isaac and Walker (1988) and others
 - Test of free-rider hypothesis
 - Experiments find much less free-riding than theory suggests
- Attempts to explain differences
 - Heterogeneous preferences
 - Fischbacher and Gachter (2010) 23% pure free riders
 - Fehr and Schmidt (1999) 73% pure free riders
 - Conditional cooperators
 - Social preferences
 - Fehr and Schmidt (1999)
 - Andreoni (1989)
 - Charness and Rabin (2003)

Anomalous Experimental Behaviour PG games: Kosfeld et al (2009)

- Two MPCR
- 76 subjects
- 4 subjects per group (N=4)
- 20 repetitions per group
- Endowment: 20 points per round
- Contribute 0 to 20 to PG
- 40 points = 1€
- After each round, subjects told total contributions
- Subjects have no knowledge of distribution of payoffs

Graphs by treatment

Indian Context (observations from an outsider)

- Short-term issues
 - Indian mitigation only marginally significant to change in climate
 - India has (I would think) significantly higher social priorities
 - Problem so far mostly due to emissions by others (such as EU, US, FSU)
- Longer-term issues
 - Damage from CC may become significant
 - India could gain from a global agreement
- Any action should be in India's self interest (individual rationality argument)

Is there a self-interest argument for Indian Mitigation?

- Help foster an international agreement helps with longterm climate change moderation
- Green growth MAY have some applicability try to remove distortions that are exacerbating depletion of natural resources in India
- Learning about decarbonizing Indian economy
 - Green growth is all about decarbonizing and growing. Possible?
 - Small steps can be a low cost way of learning
 - If successful, other countries will follow which will benefit India
 - Primary goal behind California's policies
- Stimulating low carbon innovation, perhaps as an export industry (Porter hypothesis)

Conclusions

- Green growth is a nice concept but practical implications are limited
- Empirically implementing green growth model difficult
 - Motivates a host of research questions
- Climate change is a classic economic problem with tradeoffs and limited resources
- Finding solution to climate change problem pushes economic paradigm to its limits