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Abstract 

 

This survey examines the history and current practice in integrated assessment models 

(IAMs) of the economics of climate change. It begins with a review of the emerging 

problem of climate change. The next section provides a brief sketch of the rise of IAMs in 

the 1970s and beyond. The subsequent section is an extended exposition of one IAM, the 

DICE/RICE family of models. The purpose of this description is to provide readers an 

example of how such a model is developed and what the major components are. The final 

section discusses major important open questions that continue to occupy IAM modelers. 

These involve issues such as the discount rate, uncertainty, the social cost of carbon, the 

potential for catastrophic climate change, algorithms, and fat-tailed distributions. These 

issues are ones that pose both deep intellectual challenges as well as important policy 

implications for climate change and climate-change policy. 
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I. Introduction 

 

I.A. Integrated assessment models 

 Many areas of the natural and social sciences involve complex systems that link 

together multiple physical or intellectual sectors. This is particularly true for environmental 

problems, which are intrinsically ones having strong roots in the natural sciences and 

require social and policy sciences to solve in an effective and efficient manner. A good 

example, which will be the subject of this survey, is climate change science and policy, 

which involve a wide variety of sciences such as atmospheric chemistry and climate 

sciences, ecology, economics, political science, game theory, and international law. 

 As understanding progresses across the different fronts, it is increasingly necessary to 

link together the different areas to develop effective understanding and efficient policies. In 

this role, integrated assessment analysis and models play a key role. Integrated assessment 

models (IAMs) can be defined as approaches that integrate knowledge from two or more 

domains into a single framework. These are sometimes theoretical but are increasingly 

computerized dynamic models of varying levels of complexity.  

 The present survey provides a roadmap to developments in IAMs for climate change 

over the last quarter century. It is constructed in the following sequence. We begin in this 

section with a review of the emerging problem of climate change. This is necessary to lay 

the background and motivation for why so many social and natural scientists are spending 

so much of their time on this issue. 

 The next section provides a brief sketch of the rise of IAMs in the 1970s and beyond. It 

is relatively brief because earlier surveys have covered much of the ground in an admirable 

fashion. 

 The subsequent section is an extended exposition of one IAM, the DICE/RICE family 

of models. The purpose here is to provide readers an example of how such a model is 

developed and what the components are. Other IAMs will have different structures, 

algorithms, and assumptions, but the underlying modeling philosophy of integrating 

modules from different disciplines is common to virtually all IAMS. The development of 
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the modeling is followed by a set of illustrative results from the RICE-2010 model. This is 

used to illustrate the kind of questions that IAMs can address. 

 The final section discusses major important open questions that continue to occupy 

IAM modelers. These involve issues such as the discount rate, uncertainty, the social cost of 

carbon, the potential for catastrophic climate change, and fat-tailed distributions. These 

issues are ones that pose both deep intellectual challenges as well as important policy 

implications for climate change and climate-change policy. 

 

I.B. The emerging problem of climate change  

 Before getting into modeling details, it will be useful to sketch the scientific basis for 

concerns about global warming, as reviewed by the IPCC’s Fourth Assessment Report, 

Science (2007) with updates from other sources. As a result of the buildup of atmospheric 

greenhouse gases (GHGs), it is expected that significant climate changes will occur in the 

coming decades and beyond. The major industrial GHGs are carbon dioxide (CO2), 

methane, ozone, nitrous oxides, and chlorofluorocarbons (CFCs). The most important GHG 

is CO2, whose emissions have risen rapidly in recent decades.  

 The atmospheric concentration of carbon dioxide of 390 parts per million (ppm) in 2011 

far exceeds the range over the last 650,000 years, estimated to be between 180 and 300 ppm. 

(Current estimates of CO2 concentrations at Mauna Loa are available at 

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt.) 

 Current calculations from climate models are that doubling the amount of CO2 or the 

equivalent in the atmosphere compared with pre-industrial levels will in equilibrium lead 

to an increase in the global surface temperature of 2 to 4.5 °C, with a best estimate of about 

3 °C. The suite of models and emissions scenarios used by the IPCC produce a range of 

temperature change over the 21st century of between 1.8 and 4.0 °C. Other projected effects 

are increases in precipitation and evaporation, an increase in extreme events such as 

hurricanes, and a rise in sea levels of 0.2 to 0.6 meters over this century. Some models also 

predict regional shifts, such as hotter and drier climates in mid-continental regions, 

including the U. S. Midwest. Climate monitoring indicates that actual global warming is 

occurring in line with scientific predictions.  
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  The agreed framework for all international climate-change deliberations is the United 

Nations Framework Convention on Climate Change, which took force in 1994. That 

document stated, “The ultimate objective … is to achieve … stabilization of greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 

interference with the climate system” (United Nations 2009). The Framework Convention 

was implemented in the Kyoto Protocol in 1997, in which both high-income countries and 

countries in transition from central planning agreed to binding emissions limits for the 

2008-2012 period. The framework for implementing the Protocol is most solidly 

institutionalized in the European Union’s Emissions Trading Scheme (EU ETS), which 

covers almost half of Europe’s CO2 emissions.  

 Notwithstanding its successful implementation, the Kyoto Protocol is widely seen as a 

troubled institution. Early problems appeared with the failure to include the major 

developing countries, the lack of an agreed-upon mechanism to include new countries, and 

an agreement that is limited to a single budget period. The major blow came when the 

United States withdrew from the Treaty in 2001. Whereas 66 percent of 1990 world 

emissions were included in the original Protocol, that number declined to about one-third 

in 2010 with the withdrawal of the U.S. and strong economic growth in developing 

countries (Nordhaus 2010). Strict enforcement of the Kyoto Protocol is likely to be observed 

primarily in those countries and industries covered by the EU ETS, but their emissions 

today account for only about 8 percent of the global total. If the current Protocol is 

extended at current emissions levels, models indicate that it will have little impact on 

global climate change (see the several studies in Weyant and Hill 1999). 

  

I.C. The Copenhagen Accord  

 The 2009 Copenhagen Conference of the Parties was designed to negotiate a successor 

agreement for the post-Kyoto period. Because of deep divisions about costs and about the 

distribution of emissions reductions, the meeting concluded without a binding agreement. 

However, it did lead to an agreement known as the “Copenhagen Accord” (United Nations 

2009). The accord adopts a target of limiting the increase in global mean temperature and 

states that the target is set “recognizing the scientific view that the increase …should be 

below 2 degrees Celsius.” Developing countries did sign on to the Accord. A close look 
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reveals, however, that countries committed themselves to very little. They agreed to 

“communicate” their “nationally appropriate mitigation actions seeking international 

support efforts,” but no binding targets for countries were set. 

 The reality behind the accord is not encouraging. To begin with, even if the high-

income countries fulfilled their commitments, these would probably not achieve anything 

close to the 2 °C target, as is shown below. Meanwhile, progress on reaching a more 

binding agreement has stalled. At present, a global agreement is waiting for the United 

States to take credible legislated steps. At present (2011), there are no active plans for 

legislation in the United States, and instead there are proposals to roll back current plans to 

regulate greenhouse gases required under the U.S. 1970 Clean Air Act. 

  

I.D. Climate change as a global public good 

 Climate change is a polar case of economic phenomena known as global public goods 

(Samuelson 1954). Public goods are activities for which the cost of extending the service to 

an additional person is zero and for which it is impossible or expensive to exclude 

individuals from enjoying. Global public goods are ones whose influences are felt around 

the world rather than in one nation, town, or family. What makes global public goods 

different from normal economic activities is that there are at best weak economic and 

political mechanisms for resolving these issues efficiently and effectively. 

 The economic theory of public goods has been extensively discussed in many contexts 

(for example, Oakland 1987). For this reason, this review limits the discussion to the 

application of public-goods theory to climate change and modeling in this area. 

 

I.E. Economic modeling of climate change 

 Most economic studies of climate change, including most IAMs, integrate geophysical 

stocks and flows with economic stocks and flows. The major difference between IAMs and 

geophysical models is that economic measures include not only quantities but also 

valuations, which for market or near-market transactions are prices. The essence of an 

economic analysis is to convert or translate all economic activities into monetized values 

using a common unit of account, and then to compare different approaches by their impact 

on total values or a suite of values.  
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 There are different ways of creating a standardized unit of account. The most 

satisfactory is to use a common “purchasing power parity” exchange rate across different 

regions. For example, I will use the unit of 2005 international U.S. dollars below. However, 

the values are not really money. Rather, they represent a standard bundle of goods and 

services (such as $1000 worth of food, $3000 of housing, $900 of medical services, and so 

forth). So we are really translating all activities into the number of such standardized 

bundles. Both translation of different currencies into a common currency and conversion of 

values over time into a present value using a discount rate are deep issues in economics, 

and we will review the latter in the section on open problems below. 

 To illustrate the economic approach, suppose that an economy produces only corn. We 

might decide to reduce corn consumption today and store it for the future to offset the 

damages from climate change on future corn production. In weighing this policy, we 

consider the economic value of corn both today and in the future in order to decide how 

much corn to store and how much to consume today. In a complete economic account, 

“corn” would represent all economic consumption. It would include all market goods and 

services as well as the value of non-market and environmental goods and services. That is, 

economic welfare – properly measured – should include everything that is of value to 

people, even if those things are not included in the marketplace. 

 The central questions posed by economic approaches to climate change are the following: 

How sharply should countries reduce CO2 and other GHG emissions? What should be the 

time profile of emissions reductions? How should the reductions be distributed across 

industries and countries?  

 There are also important and politically divisive issues about the instruments that should 

be used to impose cuts on consumers and businesses. Should there be a system of 

emissions limits imposed on firms, industries, and nations? Or should emissions reductions 

be primarily induced through taxes on GHGs? Should we subsidize green industries? What 

should be the relative contributions of rich and poor households or nations? Are 

regulations an effective substitute for fiscal instruments? 

  In practice, an economic analysis of climate change weighs the costs of slowing climate 

change against the damages of more rapid climate change. On the side of the costs of 

slowing climate change, this means that countries must consider whether, and by how 



7 
 

much, to reduce their greenhouse-gas emissions. Reducing GHGs, particularly deep 

reductions, will require taking costly steps to reduce CO2 emissions. Some steps involve 

reducing the use of fossil fuels; others involve using different production techniques or 

alternative fuels and energy sources. Societies have considerable experience in employing 

different approaches to changing energy production and use patterns. Economic history 

and analysis indicate that it will be most effective to use market signals, primarily higher 

prices on carbon fuels, to give signals and provide incentives for consumers and firms to 

change their energy use and reduce their carbon emissions. In the longer run, higher 

carbon prices will also provide incentives for firms to develop new technologies to ease the 

transition to a low-carbon future. 

 On the side of climate damages, our knowledge is very meager. For most of the time span 

of human civilizations, global climatic patterns have stayed within a very narrow range, 

varying at most a few tenths of a degree Centigrade (°C) from century to century. Human 

settlements, along with their ecosystems and pests, have generally adapted to the climates 

and geophysical features they have grown up with. Economic studies suggest that those 

parts of the economy that are insulated from climate, such as air-conditioned houses and 

most manufacturing operations, will be little affected directly by climate change over the 

next century or so (see by reference IPCC Impacts 2007).  

 However, those human and natural systems that are “unmanaged,” such as rain-fed 

agriculture, seasonal snow packs and river runoffs, and most natural ecosystems, may be 

significantly affected. While economic studies in this area are subject to large uncertainties, 

recent surveys of the literature on damages from future climate change indicate that the 

economic damages from climate change with no interventions will be in the order of 2 to 3 

percent of world output per year by the end of the 21st century (see particularly Tol 2009 for 

a recent review of damage estimates). The damages are likely to be most heavily 

concentrated in low-income and tropical regions such as tropical Africa and India. While 

some countries may benefit from climate change, there is likely to be significant disruption 

in any area that is closely tied to climate-sensitive physical systems, whether through 

rivers, ports, hurricanes, monsoons, permafrost, pests, diseases, frosts, or droughts. 

Moreover, damage estimates cannot reliably include estimates of the costs of ecological 
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impacts such as ocean acidification, species extinction, ecosystem disruption, or of the 

dangers posed by tipping points in the earth systems. 

 

I.F. Previous surveys of integrated assessment models 

 A search on Google Scholar finds 3610 citations to “integrated assessment models.” 

However, the number of journal publications is much smaller at 175 over the period 1995-

2011. The time trend for both is shown in Figure 1. Clearly, there is a major growth in 

research in this area, although the ratio of ISI publications to Scholar publications is low. 

One reason is that a great deal of the work is done in the “gray literature” rather than in 

standard journal publications. 

 Although integrated assessment models have been increasingly used for two decades, 

there is relatively little literature that surveys the technical aspects of models. By contrast, 

there is a vast literature on the results as well as on applications of models.  

 An exemplary survey by Weyant et al. (1996) for the IPCC’s second assessment 

examined a range of IAMs and provided a fine survey of the state of the art at that time. 

Unfortunately, that survey is not currently available on the internet, but it should be the 

starting point for those wishing to understand the state of the art as of the mid-1990s. 

Weyant et al. (1996) emphasized, as we will below, the importance of multiple approaches 

to development of IAMs because of the difficulty of encompassing all the important 

elements in a single model. 

 A more recent pair of surveys is by Kolstad (1998) and Kelly and Kolstad (1999). These 

surveys examine 21 IAMS, with dates from 1992 to 1996. The authors emphasized the 

important distinction between policy optimization and evaluation models. This distinction 

remains one of the central dividing lines among different models, although it is not clearly 

understood. Kolstad (1998) writes that “nearly all the results have come from the so-called 

policy optimization models, the top-down economy-climate models. Virtually no new basic 

understanding appears to have emerged from the policy evaluation models…” This strong 

challenge appears to have been largely lost on the modeling community. 

 Another issue that was emphasized by Kelly and Kolstad was the importance of 

uncertainty. The conclusion of this survey was the following: 

Master
Underline
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 The integrated assessment community has done an excellent job of analyzing, 

comparing, and contrasting the multitude of IAMs. Because of the analysis, IAMs give 

a remarkably consistent message. However, despite the consistent message and the 

large amount of government research money which has been spent, the message is not 

known far outside the integrated assessment community. The integrated assessment 

community must still do more to bring the results to the forefront of the debate on 

what to do about climate change. 

 This has changed somewhat in recent years as models have been increasingly used by 

governments in their policy analyses.  

 

I.G. The need for integrated modeling  

 The challenge of coping with global warming is particularly difficult because it spans 

many disciplines and parts of society. Ecologists may see it as a threat to ecosystems, 

marine biologists as a problem leading to ocean acidification, electric utilities as a debit to 

their balance sheets, and coal miners as an existential threat to their livelihood. Businesses 

may view global warming as either an opportunity or a hazard, politicians as a great issue 

as long as they don’t need to mention taxes, ski resorts may view it as a mortal danger to 

their already-short seasons, golfers as a boon to year-round recreation, and poor countries 

as a threat to their farmers as well as a potential source of financial and technological aid. 

This many-faceted nature also poses a challenge to natural and social scientists who must 

incorporate a wide variety of geophysical, economic, and political disciplines into their 

diagnoses and prescriptions. 

 The task of integrated modeling is to pull together the different aspects of a problem so 

that a decision or analysis can consider all important endogenous variables that operate 

simultaneously. Figure 2 shows schematically the important modules in the case of climate 

change. A complete analysis must consider emissions, concentrations, climate change, and 

impacts. The last arrow in the process links the impacts and policies back to emissions, thus 

closing the loop. 

I.H. The essential simultaneity of economic decisions, geophysical reactions, impacts, and 

economic policy 
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 It must be emphasized that a complete integrated assessment is not necessary for all 

parts of the climate-change challenge. Each of the different boxes in Figure 2 is in fact an 

entire discipline, with many talented scientists pursuing questions at the frontier of modern 

natural and social science. For example, the “climate system” box would represent the 

work of dozens of teams in many countries, building models, calibrating the models to 

data, and the like. Indeed, much of the 1000 page reports of the IPCC on science are built 

on scientists studying “the climate system.” Similar teams are at work in the other areas. 

 The point emphasized in IAMs is that we need to have at a first level of approximation 

models that operate all the modules simultaneously. The climate models, for example, use 

stylized emissions as inputs to their simulations. In the most recent round of model results 

(the IPCC Fourth Assessment Review), the inputs were a set of scenarios generating several 

years earlier in the SRES scenario study (SRES 2000). There is no linkage from the climate 

models to the economy and then back to emissions. It is exactly this linkage that is the 

purpose of integrating the different parts of the climate-change nexus in IAMs. 

  

I.I. Background in energy modeling and early approaches  

 Integrated assessment models of climate change grew organically from energy models. 

One of the earliest careful comparisons of energy models was the Modeling Resource 

Group (MRG) analysis of different models (MRG 1978). This project, chaired by economist 

Tjalling Koopmans, formed one of the study groups of the larger National Academy of 

Sciences Study of Nuclear and Alternative Energy Systems (CONAES 1978). The MRG 

analyzed a number of energy models that projected energy demands and technologies over 

a long time horizon. The earlier work of Koopmans on the linear programming approach to 

production as well as the Samuelson principle of “markets as maximization” (Samuelson 

1949) formed the intellectual core of much of the energy modeling starting at that time and 

proceeding to the present. 

 It is notable that the even though the CONAES study identified climate change as a 

key long-term issue, none of the energy models used in the study or reviewed by the MRG 

explicitly included CO2 emissions or climate change in their analyses. Work of Nordhaus 

extending the MRG modeling approach to include a climate module was undertaken in 

parallel with the CONAES study and was published in Nordhaus (1977) and Nordhaus 
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(1979). This approach, which built on a highly disaggregated partial equilibrium model of 

the world energy system, was abandoned in favor of more aggregated approaches (the 

DICE and RICE models discussed later). 

 Several of the current integrated assessment models grew out of the energy models of 

the 1970s and 1980s. Particularly important were the studies of Alan Manne. In a series of 

studies from the 1960s through the 1990s, his work on mathematical programming, integer 

programming, learning, and integration of energy and environmental modules served as 

landmarks and inspiration for later models. (See Manne 1962, 1974, 1976 and well as in 

joint work with Richard Richels discussed later.)  

 The first integrated assessment models in climate change were basically energy models 

with an emissions model included, and later with other modules such as a carbon cycle and 

a small climate model. Nordhaus’s early approaches (1975, 1977, 1978) were partial 

equilibrium energy models with exogenous output. One of the important landmarks in 

development of IAMs was Manne’s ETA-Macro model, which was the first to imbed an 

energy system in a full economic growth model (Manne 1977). The earliest versions of the 

DICE and RICE models in Nordhaus (1992, 1994) moved to a growth-theoretic framework 

similar to the Manne and Manne-Richels models. (Manne and Richels 1991, 1992). 

  

I.J. The current scene  

 It is not possible to make a comprehensive list of IAMs as of mid-2011. One indication 

of the richness of the landscape is the participation in the IAM Consortium (see 

http://iamconsortium.org/), which lists 42 different organizations. Table 1 shows the 

sectoral distribution of members of the Consortium (which does not map one-to-one to 

models but is indicative).  

 Integrated assessment models are increasingly used in analyses by national 

governments and international assessments. Particularly important have been the 

intermodal comparisons undertaken by the Energy Modeling Forum headed by John 

Weyant. Exemplary in this respect is the Energy Modeling Forum study 22 (Clarke 2009), 

which used 17 models and compared a range of scenarios including a reference 

(uncontrolled) scenario along with several scenarios that constrained radiative forcings. 
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These studies are extremely valuable because they provide a range of projections so that 

scientists and decision makers can understand the uncertainties of the projections. 

 The next section presents the DICE/RICE models as an example of an IAM. These 

models are discussed largely because they are small and transparent. For many scientific 

and policy purposes, more detailed IAMs will be necessary. Three IAMs that are widely 

used in the US are the NEMS model (developed by the Energy Information Administration 

of the US government, see NEMS 2011); the IGEM model (developed and maintained by 

Dale Jorgenson and his colleagues, see IGEM 2011); and the MIT EPPA model (developed 

by a team of researchers currently led by John Reilly, see EPPA 2011).  

 There are several other important models that have been widely used in both the 

scholarly and policy circles. For example, 17 models participated in the EMF-22 model 

comparison study. These models were PACE, IMAGE, MRN-NEEM, GTEM, MiniCAM, 

SGM, IGSM, WITCH, ADAGE, GEMINI, POLES, IGEM, MESSAGE, FUND, ETSAP-TIAM, 

MERGE, and DART. Descriptions of the models are beyond the scope of this survey. For a 

description of the models, with references, see Clarke et al. (2009). 

 The larger IAMs tend to be very detailed. I will use IGEM to illustrate the complexity 

of large models. IGEM has about 4000 endogenous variables per period (year), and the 

solution works by backward induction from 2130. Policy variables include taxes on 

commodities, marginal and average taxes on factors, tax credits on investment, a 

consumption-only tax, tariffs on imports, taxes on carbon, and technology mandates. The 

program is written in Fortran and C codes, with a total of about 40,000 lines. According to 

its primary developer, IGEM is proprietary, and being too complicated to modify by 

outsiders, has never been transferred to another entity.  Without going into the details 

of the larger models, it will be useful to note that such models can investigate questions at a 

much higher level of resolution than the smaller models. For example, such models have 

done important studies of the impacts of climate-change policies on the distribution of 

income; the impacts of a specific set of policies, such as the American Clean Energy and 

Security Act of 2009; the impact of climate policy on U.S. aviation; and the international 

leakage involved when policies are not harmonized. The larger models play a central role 

in policy analysis but are more difficult to use than the smaller models and, as noted above, 

are often difficult to transfer to other users. 
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II. DICE and RICE Models as Examples of IAMs 

 

II.A. Purpose of this section 

 In this section, I present an extended description of the DICE and RICE integrated 

assessment models. The purpose is primarily to show the way such a model is constructed, 

and to provide details on the components. Most IAMs have a similar analytical structure, 

although they vary greatly in their detail, coverage, data, and algorithmics. The last part of 

this section reviews some of the oversimplifications in IAMs. 

 

II.B. Introduction to the models 

 The DICE (Dynamic Integrated model of Climate and the Economy) and RICE 

(Regional Integrated model of Climate and the Economy) models have gone through 

several revisions since their first development around 1990. The latest published versions 

are the RICE-2010 and DICE-2010 model, and this exposition will follow that model 

structure. This is very similar to the 2007 version fully documented in Nordhaus (2007). We 

begin with a description of the DICE-2010 model, after which we provide the detailed 

equations. In a subsequent section, we discuss the RICE model. This section draws heavily 

on Nordhaus (1994, 2007, 2010) and Nordhaus and Boyer (2000).  

 The DICE model is a globally aggregated model. The RICE-2010 model is essentially 

the same except that output and abatement have regional structures for 12 regions. The 

discussion will use the term “DICE model,” and for most modules the analysis applies 

equally to the RICE model. The differences will be described later.  

 The DICE model views the economics of climate change from the perspective of 

neoclassical economic growth theory. In this approach, economies make investments in 

capital, education, and technologies, thereby reducing consumption today, in order to 

increase consumption in the future. The DICE model extends this approach by including 

the “natural capital” of the climate system as an additional kind of capital stock. In other 

words, it views concentrations of GHGs as negative natural capital, and emissions 

reductions as investments that raise the quantity of natural capital (or reduce the negative 

capital). By devoting output to emissions reductions, economies reduce consumption today 
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but prevent economically harmful climate change and thereby increase consumption 

possibilities in the future.  

 

II.C. Objectives or goals of the IAM 

 IAMs can be divided into two general classes – policy optimization and policy 

evaluation models (Weyant et al. 1996). Policy evaluation model generally are recursive or 

equilibrium models that generate paths of important variables but do not optimize an 

economic outcome. Policy optimization models have an objective function or welfare 

function that is maximized and can be used to evaluate alternative paths or policies. In 

models that have an economic structure, the objective function is generally a measure of 

economic welfare. This would typically be a set of utility functions in general equilibrium 

models or consumer and producer surplus in partial equilibrium models. These are not as 

different as might be supposed, as policy optimization models can be run in a non-policy 

mode, while policy evaluation models can compare different policies. However, there is 

often a difference in the solution algorithm as recursive models are often much simpler to 

solve computationally than are optimization models. 

 The DICE/RICE models are primarily designed as policy optimization models, 

although they can be run as simple projection models as well. In both, the approach is to 

maximize an economic objective function. The objective function represents the goal 

implicit in the problem. For the DICE/RICE models, the objective function refers to the 

economic well-being (or utility) associated with a path of consumption. As will be 

emphasized below, the use of optimization can be interpreted in two ways: First, seen both, 

from a positive point of view, as a means of simulating the behavior of a system of 

competitive markets; and, from a normative point of view, as a possible approach to 

comparing the impact of alternative paths or policies on economic welfare.  

 In the DICE and RICE models, the world or individual regions are assumed to have 

well-defined preferences, represented by a social welfare function, which ranks different 

paths of consumption. The social welfare function is increasing in the per capita 

consumption of each generation, with diminishing marginal utility of consumption. The 

importance of a generation’s per capita consumption depends on the size of the population. 

The relative importance of different generations is affected by two central normative 



15 
 

parameters, the pure rate of social time preference (“generational discounting”) and the 

elasticity of the marginal utility of consumption (the “consumption elasticity” for short). 

These two parameters interact to determine the discount rate on goods, which is critical for 

intertemporal economic choices. In the modeling, we set the parameters to be consistent 

with observed economic outcomes as reflected by interest rates and rates of return on 

capital, a choice that will be central to the results and is further discussed in the section on 

discounting below. 

 The DICE/RICE models assume that economic and climate policies should be 

designed to optimize the flow of consumption over time. It is important to emphasize that 

consumption should be interpreted as “generalized consumption,” which includes not only 

traditional market goods and services like food and shelter but also non-market items such 

as leisure, health status, and environmental services.  

 
The mathematical representation of this assumption is that policies are chosen to 

maximize a social welfare function, W, that is the discounted sum of the population-

weighted utility of per capita consumption, where c is per capita consumption, L is 

population, and R(t) is the discount factor, all of which are discussed as we proceed. 

Equation (1) is the mathematical statement of the objective function. This representation is 

a standard one in modern theories of optimal economic growth (see Ramsey 1928, 

Koopmans 1965, Cass 1965).
 

     

 
1

1
T max

t

( ) W U[c(t),L(t)]R(t)  

 There are a number of further assumptions underlying this choice of an objective 

function. First, it involves a specific representation of the value or “utility” of consumption. 

The DICE/RICE models assume that utility is represented by a constant elasticity utility 

function, as shown in equation (2).  

    (2)      1-U [ c(t),L(t)] = L(t)[ c(t) / (1- )]   

 This form assumes a constant elasticity of the marginal utility of consumption,  . The 

elasticity is a parameter that represents to extent of substitutability of the consumption of 

different years or generations. If  is close to zero, then the consumptions of different 

generations are close substitutes; if  is high, then the consumptions are not close 

substitutes. Often,  will also be used to represent risk aversion, but these are strictly 
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speaking quite distinct concepts and should not be confused (see Epstein and Zin 1989, 

1991). Additionally, the elasticity is distinct from the personal behavioral characteristics, as 

will be emphasized below. We calibrate   in conjunction with the pure rate of time 

preference, as is discussed below.  

 Second, this specification assumes that the value of consumption in a period is 

proportional to the population. In the RICE model, the presence of multiple agents will 

lead to major issues of interpretation and computation discussed below. 

 Third, this approach applies a discount on the economic well-being of future 

generations, as is defined in Equation (3). 

 (3)      -tR(t )  (1+ ρ)         

 In this specification, R(t) is the discount factor, while the pure rate of social time 

preference, ρ , is the discount rate which provides the welfare weights on the utilities of 

different generations.  

 We should add a note of interpretation of the equilibrium in the DICE model. We have 

specified the baseline or no-controls case so that, from a conceptual point of view, it 

represents the outcome of market and policy factors as they currently exist. In other words, 

the baseline model is an attempt to project from a positive perspective the levels and 

growth of major economic and environmental variables as would occur with no climate-

change policies. It does not make any case for the social desirability of the distribution of 

incomes over space or time of existing conditions, any more than a marine biologist makes 

a moral judgment on the equity of the eating habits of whales or jellyfish. This point will be 

further discussed in the section on “positive v. normative issues.” 

 We can put this point differently in terms of welfare improvements. The calculations of 

the potential improvements in world welfare from efficient climate-change policies 

examine potential improvements within the context of the existing distribution of income 

and investments across space and time. There may be other improvements – in 

environmental policies, in military policies, in tax or transfer programs, or in international 

aid programs – that would improve the human condition, and might improve it even more 

than the policies we consider, but these are outside the scope of this analysis.  
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II.D. Economic Variables 

 The economic sectors are standard to the economic growth literature. The main 

difference from standard analysis is the very long time frame that is required for climate-

change modeling. While most macroeconomic models run for a few years, or in the 

development context a few decades, climate-change projects necessarily must run a century 

or more. The result is that many of the projections and assumptions are based on very thin 

evidence.  

 We begin with the standard neoclassical decisions about capital accumulation and then 

consider the geophysical constraints. The DICE/RICE models are simplified relative to 

many models because they assume a single commodity, which can be used for either 

consumption or investment. Consumption should be viewed broadly to include not only 

food and shelter but also non-market environmental amenities and services. 

 It is useful to consider the multi-region RICE version, because in reality the DICE 

model is built up from regional aggregates. Each region is endowed with an initial stock of 

capital and labor and an initial and region-specific level of technology. Population growth 

and technological change are region-specific and exogenous, while capital accumulation is 

determined by optimizing the flow of consumption over time for each region. Regional 

outputs and capital stocks are aggregated using purchasing power parity (PPP) exchange 

rates (although this has been controversial, see IPCC Fourth Assessment, Mitigation 2007 

and Nordhaus 2007a). 

 The next set of equations determines the evolution of world output over time. 

Population and the labor force are exogenous. These are simplified to be logistic-type 

equations. The growth of population in the first decade is given, and the growth rate 

declines so that total world population approaches a limit of 10.3 billion in 2100. These 

numbers have been revised upward in line with the most recent UN projections and are 

about 20 percent higher than the 2007 DICE/RICE model estimates. (A fine recent review is 

Lee 2011 and other articles in the same issue.) 

 Output is produced with a Cobb-Douglas production function in capital, labor, and 

energy. Energy takes the form of either carbon-based fuels (such as coal) or non-carbon-

based technologies (such as solar or geothermal energy or nuclear power). Technological 

change takes two forms: economy-wide technological change and carbon-saving 
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technological change. Carbon-saving technological change is modeled as reducing the ratio 

of CO2 emissions to output. Carbon fuels are limited in supply. Substitution from carbon to 

non-carbon fuels takes place over time as carbon-based fuels become more expensive, 

either because of resource exhaustion or because policies are taken to limit carbon 

emissions. 

 Production is represented by a modification of a standard neoclassical production 

function. The underlying population and output estimates are aggregated up from a 

twelve-region model. Outputs are measured in purchasing power parity (PPP) exchange 

rates using the IMF estimates (2007). Total output for each region is projected using a 

partial convergence model, and the outputs are then aggregated to the world total. The 

regional and global production functions are assumed to be constant-returns-to-scale Cobb-

Douglas production functions in capital, labor, and Hicks-neutral technological change. 

Global output is shown in Equation (4): 

    1(4)     1 1Q(t) [ (t)]A(t)K(t) L(t) / [ (t)]  

 In this specification, Q(t) is output net of damages and abatement, A(t) is total factor 

productivity, and K(t) is capital stock and services. The additional variables in the 

production function are (t)  and (t) , which represent climate damages and abatement 

costs, shown in Equations (5) and (6).  




3(5)     

(5')
1 AT 2 AT

2
1 AT 1 AT

(t) = f [ T (t)]+ f [ SLR(t)]+ f [ M (t)]

     (t)  =ψ T (t)+ψ [ T (t) ]   

 Equations (5) and (5’) involve the economic impacts of climate change, which is the 

thorniest issue in climate-change economics. These estimates are indispensable for making 

sensible decisions about the appropriate balance between costly emissions reductions and 

climate damages. However, providing reliable estimates of the damages from climate 

change over the long run has proven extremely difficult. The present study relies on 

estimates from earlier syntheses of the damages, with updates in light of more-recent 

information. The basic assumption is that the damages from gradual and small climate 

changes are modest, but that the damages rise non-linearly with the extent of climate 

change. These estimates also assume that the damages are likely to be relatively larger for 

poor, small, and tropical countries than for rich, large and mid-latitude countries. 
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 The damage function in (5) is the complete damage function in the RICE-2010 model. 

The aggregate damage curve is built up from estimates of the damages for the twelve 

regions, including assumed sectoral change and underlying income elasticities of different 

outputs. It includes estimated damages to major sectors such as agriculture, the cost of sea-

level rise, adverse impacts on health, non-market damages, as well as estimates of the 

potential costs of catastrophic damages. The functions include damages from temperature 

change ( TAT ), specific damages from sea-level rise (SLR), and the impacts of CO2 

fertilization, which are a function of atmospheric concentrations of CO2 (MAT).  

 To a first approximation, the damages are quadratic in temperature over the near term, 

and these are represented in equation (5’). In some model simplifications, (5’) can be used 

instead of (5). Figure 3 shows the results of the Tol (2009) survey on damages, the IPCC 

assessment, and the assumption in the 2010 vintage of the DICE-RICE models as a function 

of global mean temperature increase.  

 A warning about the functional form in equation (4) for damages should be noted 

when using for large temperature increases. The damage function has been calibrated for 

damage estimates in the range of 1 to 4 °C. The evidence is very limited for higher 

warming. Note also that the functional form in (4), which puts the damage ratio in the 

denominator, is designed to ensure that damages do not exceed 100% of output, and this 

limits the usefulness of this approach for catastrophic climate change. The damage function 

needs to be examined carefully or respecified in cases of higher warming or catastrophic 

damages. 

    (6)     2
1(t) = (t) (t) (t)  

 The abatement cost equation in (6) is a reduced-form type model in which the costs of 

emissions reductions are a function of the emissions reduction rate, μ(t). The abatement 

cost function assumes that abatement costs are proportional to output and to a polynomial 

function of the reduction rate. The cost function is estimated to be highly convex, indicating 

that the marginal cost of reductions rises from zero more than linearly with the reductions 

rate.  

 A new feature of the DICE-2007 and RICE-2010 models is that they explicitly include a 

backstop technology, which is a technology that can replace all fossil fuels. The backstop 

technology could be one that removes carbon from the atmosphere or an all-purpose 



20 
 

environmentally benign zero-carbon energy technology. It might be solar power, or 

carbon-eating trees or windmills, or some as-yet undiscovered source. The backstop price is 

assumed to be initially high and to decline over time with carbon-saving technological 

change. In the full regional model, the backstop technology replaces 100 percent of carbon 

emissions at a cost of between $230 and $540 per ton of CO2 depending upon the region in 

2005 prices. The backstop technology is introduced into the model by setting the time path 

of the parameters in the abatement-cost equation (6) so that the marginal cost of abatement 

at a control rate of 100 percent is equal to the backstop price for each year. 

 The next three equations are standard accounting equations. Equation (7) states that 

output includes consumption plus gross investment. Equation (8) defines per capita 

consumption. Equation (9) states that the capital stock dynamics follows a perpetual 

inventory method with an exponential depreciation rate.  

(7)     Q(t) = C(t)+ I(t)  

(8)     c(t) = C(t) / L(t)  

  (9)     1KK(t ) I( t ) K(t )  

 CO2 emissions are projected as a function of total output, a time-varying emissions-

output ratio, and an emissions-control rate. The emissions-output ratio is estimated for 

individual regions and is then aggregated to the global ratio. The emissions-control rate is 

determined by the climate-change policy under examination. The cost of emissions 

reductions is parameterized by a log-linear function, which is calibrated to recent studies of 

the cost of emissions reductions. 

 Early versions of the DICE and RICE models used the emissions control rate as the 

control variable in the optimization because it is most easily used in linear-program 

algorithms. In recent versions, we have also incorporated a carbon tax as a control variable. 

This can be accomplished using an Excel SOLVER version with a modified Newton method 

to find the optimum. Using the carbon price is advantageous when modeling uncertainty 

or using price-type administrative regimes, although the solutions are identical in 

deterministic cases. 

 The final two equations in the economic block are the emissions equation and the 

resource constraint on carbon fuels. Uncontrolled industrial CO2 emissions in Equation 
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(10) are given by a level of carbon intensity, σ(t), times output. Actual emissions are then 

reduced by one minus the emissions-reduction rate, μ(t), described above. The carbon 

intensity is taken to be exogenous and is built up from emissions estimates of the twelve 

regions, whereas the emissions-reduction rate is the control variable in the different 

experiments.  

    1(10)     IndE (t)  = (t)[1- (t)]A(t) K(t) L(t)  

 Equation (11) is a limitation on total resources of carbon fuels, given by CCum. The 

model assumes that incremental extraction costs are zero and that carbon fuels are 

efficiently allocated over time by the market, producing the optimal Hotelling rents on 

carbon fuels. 

 


 
1

(11)     
T max

Ind
t

CCum E (t)  

II.E. Geophysical sectors 

 The major differentiating feature of the DICE/RICE models is the inclusion of several 

geophysical relationships that link the economy with the different forces affecting climate 

change. These relationships include the carbon cycle, a radiative forcing equation, climate-

change equations, and a climate-damage relationship. A key feature of IAMs is that the 

modules operate in an integrated fashion rather than taking inputs as exogenous inputs 

from other models or assumptions. 

 The next equations (12) to (18) link economic activity and greenhouse-gas emissions to 

the carbon cycle, radiative forcings, and climate change. These relationships have proven a 

major challenge because of the need to simplify what are inherently complex dynamics into 

a small number of equations that can be used in an integrated economic-geophysical 

model. As with the economics, the modeling philosophy for the geophysical relationships 

has been to use parsimonious specifications so that the theoretical model is transparent and 

so that the optimization model is empirically and computationally tractable. 

 In the DICE/RICE-2010 models, the only GHG that is subject to controls is industrial 

CO2. This reflects the fact that CO2 is the major contributor to global warming and that 

other GHGs are likely to be controlled in different ways (the case of the 

chlorofluorocarbons through the Montreal Protocol being a useful example). Other GHGs 
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are included as exogenous trends in radiative forcing; these include primarily CO2 

emissions from land-use changes, other well-mixed GHGs, and aerosols. 

 Recall that equation (10) generated industrial emissions of CO2. Equation (12) then 

generates total CO2 emissions as the sum of industrial and land-use emissions. CO2 arising 

from land-use changes are exogenous and are projected based on studies by other 

modeling groups. 

 (12)     Ind LandE(t) = E (t) + E (t)  

 The carbon cycle is based upon a three-reservoir model calibrated to existing carbon-

cycle models and historical data. We assume that there are three reservoirs for carbon. The 

variables MAT(t), MUP(t), and MLO(t) represent carbon in the atmosphere, carbon in a 

quickly mixing reservoir in the upper oceans and the biosphere, and carbon in the deep 

oceans. Carbon flows in both directions between adjacent reservoirs. The mixing between 

the deep oceans and other reservoirs is extremely slow. The deep oceans provide a finite, 

albeit vast, sink for carbon in the long run. Each of the three reservoirs is assumed to be 

well-mixed in the short run. Equations (13) through (15) represent the equations of the 

carbon cycle.  

11 21(13)     1 1AT AT UPM (t ) E(t ) M (t - ) M (t - )     

12 22 32(14)     1 1 1UP AT UP LOM (t ) M (t - ) M (t - ) M (t - )      

23 33(15)     1 1LO UP LOM (t ) M (t - ) M (t - )    

The parameters ij represent the flow parameters between reservoirs. Note that emissions 

flow into the atmosphere. 

 The next step concerns the relationship between the accumulation of GHGs and 

climate change. The climate equations are a simplified representation that includes an 

equation for radiative forcing and two equations for the climate system. The radiative 

forcing equation calculates the impact of the accumulation of GHGs on the radiation 

balance of the globe. The climate equations calculate the mean surface temperature of the 

globe and the average temperature of the deep oceans for each time-step. These equations 

draw upon and are calibrated with large-scale general circulation models of the 

atmosphere and ocean systems from the IPCC Fourth Assessment Report 2007.  
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 On the whole, existing climate research models are much too complex to be included in 

economic models, particularly ones that are used for optimization. Instead, we employ a 

small structural model that captures the basic relationship between GHG concentrations, 

radiative forcing, and the dynamics of climate change.  

 Accumulations of GHGs lead to warming at the earth’s surface through increases in 

radiative forcing. The relationship between GHG accumulations and increased radiative 

forcing is derived from empirical measurements and climate models, as shown in Equation 

(16). 

 2(16)     AT AT EXF(t ) { log [ M (t ) / M (1750 )]} F (t )   

F(t) is the change in total radiative forcings of greenhouse gases since 1750 from 

anthropogenic sources such as CO2, FEX(t) is exogenous forcings, and the first term is the 

forcings due to CO2. The equation uses estimated carbon in the year 1750 as the pre-

industrial equilibrium. The major part of warming is due to CO2, while the balance is 

exogenous forcing from other long-lived greenhouse gases, aerosols, ozone, albedo 

changes, and other factors. The DICE model treats other greenhouse gases and forcing 

components as exogenous either because these are relatively small and their control is 

exogenous (as the case of CFCs) or because they are poorly understood (as with cloud 

albedo effects). 

 Higher radiative forcing warms the atmospheric layer, which then warms the upper 

ocean, gradually warming the deep ocean. The lags in the system are primarily due to the 

diffusive inertia of the different layers. The latest version of the models adjusted the climate 

sensitivity to the center of the IPCC range of 3.2 °C for an equilibrium CO2 doubling. The 

dynamics are determined so that the transient temperature sensitivity is the same as the 

average of the AOGCMs reviewed in IPCC Fourth Assessment Report 2007.  

 1 2 3(17)     1   1   1  1AT AT AT AT LOT (t ) T (t ) {F(t ) - T (t ) - [T (t ) - T (t )]}         

4(18)     1 1  1LO LO AT LOT (t ) T (t ) {T (t ) - T (t )]}      

TAT(t) and TLO(t) represent respectively the mean surface temperature and the temperature 

of the deep oceans. Note that the equilibrium temperature sensitivity is given by

  2 =ATT F(t ) / . 
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 This completes the description of the DICE model. We now turn to describe the 

difference between the DICE and RICE models. 

 

II.F. The RICE-2010 Model 

 The RICE model (Regional Integrated model of Climate and the Economy) is a 

regionalized version of the DICE model. It has the same basic economic and geophysical 

structure, but contains a regional elaboration. 

 The general structure of the RICE model is similar to the DICE model with 

disaggregation into regions. However, the specification of preferences is different because 

it must encompass multiple agents (regions). The general preference function is a Bergson-

Samuelson social welfare function over regions of the form 1( , , ),NW W U U  where UI is 

the preference function of the Ith region. The model is specified using the Negishi approach 

in which regions are aggregated using time- and region-specific weights subject to budget 

constraints, yielding: 

1 1

19
T max N

I I I I
I , t

t I

( ) W U [c (t),L (t)]R (t)
 

  
 

In this specification, the I , t are the “Negishi weights” on each region and each time 

period. Each region has individual consumption and population. In principle, they may 

have different rates of time preference, although in practice the RICE model assumes that 

they are all equal. The Negishi algorithm in the RICE model sets each of the weights so that 

the marginal utility of consumption is equal in each region and each period, which ensures 

that the requirement for maximization as market simulation principle holds. We elaborate 

below on the Negishi approach, which is widely used in IAMs for climate change, in the 

section on “Computational and algorithmic aspects.“  The RICE-2010 model divides the 

world into 12 regions. These are US, EU, Japan, Russia, Eurasia (Eastern Europe and 

several former Soviet Republics), China, India, Middle East, Sub-Saharan Africa, Latin 

America, Other high income countries, and Other developing countries. Note that some of 

the regions are large countries such as the United States or China; others are large multi-

country regions such as the European Union or Latin America.  
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 Each region is assumed to produce a single commodity, which can be used for 

consumption, investment, or emissions reductions. Each region is endowed with an initial 

stock of capital and labor and with an initial and region-specific level of technology. 

Population data are from the United Nations, updated with more recent estimates through 

2009, with projections using the United Nations’ estimates to 2300. Output is measured as 

standard gross domestic product (GDP) in constant prices, and the GDPs of different 

countries are converted into constant U.S. international prices using purchasing-power-

parity exchange rates. Output data through 2009 are from the World Bank and the 

International Monetary Fund (IMF), with projections to 2014 from the IMF. CO2 emissions 

data are from the U.S. Energy Information Administration and Carbon Dioxide 

Information Analysis Center and are available in preliminary form through 2008. 

 The population, technology, and production structure is the same as in the DICE 

model. However, each region has its own levels and trends for each variable. The major 

long-run variable is region-specific technological change, which is projected for a frontier 

region (the United States), and other countries are assumed to converge partially to the 

frontier. For convenience, both carbon-energy inputs and industrial emissions are 

measured in units of carbon weight. Economic growth rates for the different regions are 

provided in Table 2. 

 The RICE-2010 model calibrates the energy-related parameters using data on historical 

GDP and CO2 emissions for the period 1960-2008. The model uses a cost function for CO2 

emissions reductions that is drawn from more detailed models at the national and regional 

levels from the IPCC Fourth Assessment Report Mitigation (2007) and the Energy 

Modeling Forum 22 report (Clarke et al. 2009). Figure 4 shows historical rates of 

decarbonization. It further divides the growth between the weighted growth of countries 

and the composition effect from the increasing weight of high-emissions-intensity 

countries. The composition effect has added nearly one percentage point per year to the 

growth of CO2 emissions in recent years. 

  The supply curve for carbon fuels allows for limited albeit very large long-run 

supplies of carbon fuels. In the optimal-growth framework, energy resources are efficiently 

allocated across time, which implies that low-cost carbon resources have scarcity prices 

(called Hotelling rents) and that carbon-energy prices rise over time.  
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 The geophysical sectors are basically the same as the DICE model. The only difference 

is that there are region-specific land-use CO2 emissions, but these are exogenous and have 

little effect on the outcomes. 

 The objective function used in the RICE model differs from that in the DICE model. 

Each region is assumed to have a social welfare function, and each region optimizes its 

consumption, GHG policies, and investment over time. The parameters for each region are 

calibrated to ensure that the real interest rate in the model is close to the average real 

interest rate and the average real return on capital in real-world markets in the specific 

region. It is here that the interpretation of optimization models as “markets as 

maximization algorithms” (see section III below) becomes important. We do not view the 

solution as one in which a world central planner is allocating resources in an optimal 

fashion. Rather, output and consumption is determined according to the initial 

endowments of technology. “Dollar votes” in the RICE model may not correspond to any 

ethical norms but instead reflects the laws of supply and demand. To put this in terms of 

standard welfare economics, the outcome is optimal in the sense of both efficient and fair if 

the initial endowments are ethically appropriate, but without that assumption we can only 

label the outcome as Pareto efficient. 

  

II.G. Computational and algorithmic aspects 

 As we discuss in the next section, IAMs are generally computationally complex 

compared to physical science models, such as climate models, that use recursive time-

stepped algorithms. The DICE model is relatively simple because it is a straightforward 

non-linear optimization problem. The DICE model traditionally was solved using the 

CONOPT or NLP solver in the GAMS modeling system (See Brooke et al. 2005). This is 

based on the generalized reduced gradient (GRG) algorithm. The basic approach is to 

embed a linear programming algorithm inside an algorithm that linearizes the non-linear 

equations. While this algorithm does not guarantee that the solution is the global optimum, 

our experience over the years has not suggested any solutions other than those found by 

the algorithm. In the latest round of models, we have used the EXCEL Solver (using the 

Risk Solver Platform or other premium product). This has the major advantage that 

optimization can be performed over prices, which is a natural approach for global warming 
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economics. (It is very difficult to implement a solution using prices as a decision variable in 

a standard linear programming algorithm.) Using EXCEL Solver is also much easier to 

understand and to detect programming errors. 

 By contrast, the RICE model (with multiple optimizing agents in equilibrium) is 

conceptually a fixed point problem. Most integrated assessment models today use a 

Negishi algorithm to solve this, and this is the approach followed in the RICE solutions. 

The origins of the Negishi approach date from work of Takashi Negishi, Peter Dixon, 

Victor Ginsberg and Jean Waelbroeck, Thomas Rutherford, and Rutherford and Manne. 

The Negishi theorem is essentially an application of the second theorem of welfare 

economics. Several authors implemented this in the mid-1990s, particularly Nordhaus and 

Yang (1996) in the first version of the RICE model, although the actual implementations 

were and continue to differ among IAMs. 

 The RICE-2010 model has been implemented only in the Excel format. The baseline 

RICE-2010 model can be used by researchers and students in the Excel format and need not 

rely upon Solver. However, the optimization requires the advanced proprietary versions of 

Solver. It should also be noted that Solver is unable to solve the largest version of the RICE 

model in a reliable fashion, and errors sometimes occur when using Solver. For example, 

when using the Solver to optimize the solution for reaching a global optimum for limiting 

temperature to 2 °C, different starting points yield optimal carbon prices that differ by as 

much as 0.005 percent for the first few periods when tolerances are set at their maximum. 

In some circumstances, Solver simply stops and cannot find a solution, and sometimes it 

finds a wildly incorrect solution. The major advantage of using the Excel-Solver approach 

is the ability to optimize using prices as control variables, which is much more difficult 

using standard mathematical programming algorithms (such as Rutherford 2000). 

 

II.H. Other solution approaches  

This survey cannot present a comprehensive review of algorithms that are used to solve 

IAMs. (This section is based on a survey of modelers by the author and Zhimin Li.) Most 

IAMs have a relatively high degree of computational complexity. They generally involve 

solutions of simultaneous equations, such as multi-market supply and demand functions, 

and often are general equilibrium problems that in principle are fixed-point problems. 
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Either as Nash equilibria or as general equilibrium problems, the models are in a 

complexity class known between P and NP known as PPAD or Polynomial Parity 

Arguments on Directed graphs (see Christos Papadimitriou 1994).   

 Up to now, only a limited number of approaches have been widely used. Most IAMs 

use constrained optimization, for example using the GAMS software described above. 

These include DICE, RICE, MERGE, FUND, and WITCH. A small number of models, such 

as DART and MRN-NEEM, have used complementarity algorithms (CP). While the Scarf 

fixed-point algorithm can find a fixed point solution (Scarf 1973), it is generally 

computationally infeasible for the current generation of IAMs. As in many areas, the 

complexity of the models has grown as fast as computer speeds, and there is no prospect 

short of quantum computing of solving the large models using fixed-point techniques. 

 The common solvers used in optimization IAMs include: CONOPT in GAMs (e.g. 

DICE, MERGE, and WITCH); PATH in GAMs (e.g. MRN-NEEM); Premium Risk Platform 

in EXCEL (e.g. current version of RICE). There has been little experience in the IAM 

community of other approaches, such as genetic algorithms. 

 

II.I.  Simplifications in IAMs 

 This sketch of a pair of IAMs in the DICE and RICE models makes it clear that they are 

highly simplified representations of the complex economic and geophysical realities. While 

small and comprehensive models have many advantages (as is discussed in later sections), 

they also have major shortcomings because of their simplifications. I discuss those related 

to production, taxation, and functional forms as examples. 

 One example of simplification is the use of a single commodity to represent all 

consumption, investment, and public goods and services. The use of a single commodity is 

particularly restrictive in the context of international trade, where the essence of trade is 

heterogeneity across regions. This point is particularly important in the question of 

whether to use market exchange rates (MER) or purchasing power parity exchange (PPP) 

rates in measuring relative national outputs. A study by Warwick J. McKibbin, David 

Pearce, and Alison Stegman (2007) investigated this issue using the G-Cubed multi–

country model. It showed that, under one scenario, emission projections based on 



29 
 

convergence assumptions defined in MER terms are 40 percent higher by 2100 than 

emission projections based on PPP comparisons of income differentials. 

 Another important set of important issues concerns taxation. The simplest models 

ignore the structure of the tax system. This is particularly important for energy and capital 

taxes, which have large effects on energy use and on the rates of return used in making 

long-term decisions in the energy sector. Some of the more detailed IAMs, such as the 

IGEM, NEMS, and EPPA discussed above, include more realistic detail on the U.S. tax and 

regulatory system, but they oversimplify or ignore the issues raised by international tax 

systems. The structure of tax systems is particularly important for estimation of the optimal 

level of carbon pricing or taxation because of the need to consider the interaction of carbon 

pricing with the structure of pre-existing tax and regulatory distortions. (See particularly 

the several important studied collected in Lawrence Goulder 2002.) 

 Many simplifications are also buried in the functional forms of models. For example, 

the RICE and DICE models rely on the Cobb-Douglas function to represent the production 

process. This is likely to overestimate substitution in some areas and underestimate it in 

others. Additionally, it may suggest a degree of smoothness in substitution that is not 

present when there are only a small number of processes, in which case an activity analysis 

framework would be preferable (such as is used in the several components in the NEMS 

model and in parts of the energy sector of the MERGE model, see Manne and Richels 2004). 

 We must put these concerns about oversimplification in the context of the questions 

that are being asked. The purpose of models is not to be an exact replica of real-world 

processes. Aside from the impossibility of achieving that goal, greater detail would actually 

be less valuable for many purposes. Instead, models are used for insights about key 

questions. For example, if we are concerned about the long-run intertemporal tradeoffs 

between consumption today and consumption in the future, a relatively simple model can 

illustrate the issues. Similarly, to determine the uncertainties associated with future climate 

change, the model must be sufficiently small and manageable so that the uncertainties can 

be estimated and Monte Carlo or other techniques can be used to capture all the major 

uncertainties. However, for many other questions, such as the impact of changes in tax 

policies or international trade or carbon leakage, more detail is needed to capture the 

international and sectoral reactions to policy changes.  
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 A useful analogy here is to the animal kingdom. Each model is like an animal that has 

its useful niche in the policy ecosystem. Small models can be fleet and can adapt easily to a 

changing environment, while large models take many years to mature but are able to 

handle much larger and more complex tasks. There is room for all in the world of climate-

change science. 

 

III. Illustrative Model Results: The Copenhagen Accord  

 

III.A. Model outputs 

 IAMs have a wide variety of applications. These were comprehensively reviewed in 

Weyant et al. (1997). Among the most important applications are the following: 

 Making consistent projections, i.e., ones that have consistent inputs and outputs of 

the different components of the system (so that the GDP projections are consistent 

with the emissions projections). 

 Calculating the impacts of alternative assumptions on important variables such as 

output, emissions, temperature change, and impacts. 

 Tracing through the effects of alternative policies on all variables in a consistent 

manner, as well as estimating the costs and benefits of alternative strategies. 

 Estimating the uncertainties associated with alternative variables and strategies. 

 Calculating the effects of reducing uncertainties about key parameters or variables, 

as well as estimating the value of research and new technologies. 

 Different IAMs are like different animals in terms of comparative strengths and 

weaknesses in tackling the different questions listed above. Comprehensive models can do 

a full cost-benefit analysis, but they are likely to be weak on the regional or industrial 

detail. The larger species of models provide great detail but may be unable to trace out 

impacts and damages, and they may be less transparent and be unable to do full 

uncertainty analyses. Some models are able to trace through the impacts of policies on land 

use; others can investigate a wide range of technologies; a few have full damage functions; 

while others include a limited number of technologies and economic variables. This 

modeling diversity allows many questions to be answered, and most questions can be 
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addressed by a large group of models and thereby provide tests of the consensus or 

dissensus across models. 

 

III.B.  Modeling the Copenhagen Accord 

 Integrated assessment models are useful devices to improve our understanding of 

tradeoffs, costs, benefits, and uncertainties. They are not truth machines, although they 

sometimes can be helpful in rooting out obvious inconsistencies and errors. With these 

objectives in mind, this section presents illustrative results from studies using the RICE-

2010 model. There are many other models that can be examined, and a particularly 

valuable review of comparative results is that in the EMF-22 study (Clarke et al. 2009). 

  For this illustration, I will focus on an analysis of the Copenhagen Accord and similar 

policies that have been discussed in policy circles in the current period. We reviewed some 

of the history of international agreements on climate change above as well as the results of 

the Copenhagen Accord. Given the current state of these agreements, it is useful to review 

the prospects for climate change and the economic implications, both for the case where 

controls are implemented as envisioned by the Copenhagen Accord and for the case where 

the present stalemate continues. This report presents the results of an updated version of 

the RICE model (Regional Integrated model of Climate and the Economy), denoted the 

RICE-2010 model. These results use the modeling results presented in Nordhaus (2010) 

with some small modifications.  

  

III.C. Policy Scenarios  

 One advantage of IAMs is that they can compare the economic and climate trajectories 

associated with different policy approaches. For this discussion of the implications of 

current policy and the Copenhagen Accord, I consider five different policy options: 

 Baseline: No climate-change policies are adopted. 

 Optimal: Climate-change policies maximize economic welfare, with full participation 

by all nations starting in 2010 and without climatic constraints. 

 Temperature-limited: The optimal policies are undertaken subject to a further 

constraint that global temperature does not exceed 2 °C above the 1900 average. 
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 Copenhagen Accord: High-income countries implement deep emissions reductions 

similar to those included in the current U.S. proposals, with developing countries 

following in the next 2-5 decades. It is assumed that implementation is through system 

of national emission caps with full emissions trading within and among countries 

(although a harmonized carbon tax would lead to the same results). 

 Copenhagen Accord with only rich countries: High-income countries implement deep 

reductions as in last scenario, but developing countries do not participate until the 22nd 

C. 

 The baseline can be interpreted as complete inaction and stalemate on climate policies. 

The “optimal” scenario assumes the most efficient climate-change policies; in this context, 

efficiency involves a balancing of the present value of the costs of abatement and the 

present value of the benefits of reduced climate damages. Although unrealistic, this 

scenario provides an efficiency benchmark against which other policies can be measured. 

The “temperature-limited” scenario is a variant of the optimal scenario that builds in a 

precautionary constraint that a specific temperature increase is not exceeded.  

 The “Copenhagen Accord” scenario assumes that the announced emissions-reduction 

policies for high-income countries for the near term are implemented. It then extends these 

to other high-income countries to parallel the U.S.-proposed reductions. Developing 

countries are assumed to follow within a few decades. Table 3 shows the base and 

commitment years for different regions. The fifth scenario is the same as the Copenhagen 

Accord scenario, but developing countries do not participate until well into the 22nd 

century. For this scenario, the high-income participants are the United States, the European 

Union, Japan, Russia, and a group of other high-income countries. 

  

III.D. Major Results 

The results presented here should be viewed as only suggestive and illustrative. They come 

from a single model and modeling perspective, and most of the relationships are subject to 

large uncertainties. They are presented to show the kinds of results that can be obtained 

using IAMs. Similar results are found in the report in Rogelj et al. (2010).  

 Figure 5 shows global CO2 emissions under each of the 5 policy scenarios. 

Unrestrained emissions are estimated to grow very rapidly. Emissions under the optimal 
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and temperature-limited scenarios are essentially flat for the next 2 to 6 decades and then 

decline. The optimal path imposes a cut in global emissions of 50% from 2005 in 100 years, 

and the temperature-limited path requires zero emissions at about 2075.  

 Atmospheric concentrations of CO2 rise sharply under the baseline path, reaching 793 

ppm by 2100 (see Figure 6 and Table 4). The optimal and temperature-limited paths show 

some rise of concentrations from current levels, peaking between 500 and 600 ppm. (Note 

that these refer to CO2, not to CO2-equivalent, concentrations.) Radiative forcings (Table 4) 

peak at 4.4 W/m2 in the optimal path and at 3.2 W/m2 in the temperature-limited path. 

These forcings include those from other GHGs as well as estimates of other anthropogenic 

forcings such as from sulfates. (Note that many current studies include only long-lived 

GHGs and therefore will generally overstate current radiative forcings relative to those 

estimated by the IPCC in its Fourth Assessment Report.) 

 Global temperature projections, shown in Figure 7 and Table 4, rise sharply under the 

baseline, with increases of 3.5 °C in 2100, 5.7 °C in 2200, and a peak (not shown) at 6.7 °C, 

all relative to 1900. The optimal and temperature-limited paths rise in the early 21st century 

because of the momentum of past emissions. They then bend downward as emissions are 

reduced, peaking at 2.0 °C (obviously) for the temperature-limited path and 3.0 °C for the 

optimal path. Two important results are that the optimal path has a relatively low 

maximum temperature, and that the temperature increase for this path averaged over 2100-

2300 is 2.7 °C. 

 Perhaps the most important outputs of integrated economic models of climate change 

are the near-term “carbon prices.” This is a concept that measures the marginal costs of 

reductions of emissions of GHGs. In a market environment, such as a cap-and-trade 

regime, the carbon prices would be the trading price of carbon emission permits. In a 

carbon-tax regime, these would be the harmonized carbon tax among participating regions. 

We can also judge different policies against benchmarks by examining their near-term 

carbon prices, which are shown for the different scenarios in Table 5, in 2005 dollars. A 

graphical comparison is shown in Figure 8. Carbon prices in the baseline scenario, equal to 

the Hotelling rents on carbon fuels, are essentially zero and are therefore not depicted. 

Prices under the optimal and temperature-limited scenarios at first rise to $38 and $79 per 

ton of carbon, respectively, by 2015. Prices under the optimal scenario then continue to rise 
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sharply until they reach the projected backstop price. (All prices in this review are in tons 

of carbon weight in 2005 international US $. Note that prices per ton of CO2 are 3.67 times 

smaller.) 

 Global average carbon prices under the two Copenhagen Accord scenarios are much 

lower than under the previous scenarios for the first 2 decades of the projections, reflecting 

the gradual introduction of policy interventions as well as incomplete participation. Note 

that the effective carbon price today (around $1 per ton carbon) is well below that required 

under either the optimal or the temperature-limited scenario. Numerical values for carbon 

prices for the different scenarios are reported in Table 5, and those for the Copenhagen 

Accord with no trading in Table 6. Table 7 presents the associated emissions control rates 

for the Copenhagen Accord with full trading.  

 Table 8 shows the large stakes involved in climate-change policies as measured by 

aggregate costs and benefits. Using the model discount rates, the optimal scenario raises 

the present value of world income by $9.1 trillion, or 0.35% of discounted income. This is 

equivalent to an annuity of $454 billion per year at a 5% annual discount rate. Imposing the 

2 °C temperature constraint has a significant economic penalty, reducing the net benefit by 

almost half, because of the difficulty of attaining that target with so much inertia in the 

climate system. The Copenhagen Accord with phased-in participation of developing 

countries has substantial net benefits, but lack of participation in the “rich only” case 

reduces these substantially. Figure 9 shows the path of net costs as a percent of income for 

7 major regions. Costs rise gradually over the coming decades and reach around 1% of 

national income for the high-income countries in the mid-21st century. 

 The results of the RICE-2010 model highlight the spatial asymmetry between winners 

and losers among countries. The trajectory of net costs for selected countries is shown in 

Figure 9, and the numerical net costs in 2055 are shown in the last column of Table 9. The 

regions designated to undertake the largest emissions reductions under the Copenhagen 

Accord are the United States, China, and the European Union; the price tag for these 

regions totals more than $1 trillion in discounted costs through 2055. Several other regions, 

particularly Russia, can expect net benefits in a trading regime because they have been 

allocated excess emissions permits under the Kyoto Protocol and are assumed to continue 

those allocations in its successor. Although poor countries can present reasoned arguments 
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why rich countries should take the major emissions cuts, rich countries will weigh their 

own costs and attempt to spread the burden more widely. This asymmetry reinforces the 

tendency of countries to move to their noncooperative equilibrium, resulting in an “après 

vous” syndrome in which no country takes substantial steps. 

 There are many conclusions that can be drawn from the present modeling effort. One 

important result is that, even if countries meet their ambitious objectives under the 

Copenhagen Accord, global temperatures are unlikely to keep within the 2 °C objective. 

This conclusion is reinforced if developing countries delay their full participation beyond 

the 2030-2050 timeframe.  

  

III.E. Comparisons with Other Studies 

 The results here can be compared with those of earlier versions of the RICE model as 

well as those of other modeling groups. The temperature projections of the RICE-2010 

model are close to those of the earliest vintages (Figure 10). The damage ratio (the ratio of 

climate damage to output) is similar to that found in earlier versions for the first century, 

but the latest version projects higher damage ratios in the more distant future because the 

projected temperature rise is larger (see SI in Nordhaus 2010). The optimal carbon price in 

the near term is substantially higher than in earlier versions (see SI in Nordhaus 2010). For 

example, that price for 2015 is $38 per ton of carbon, whereas in the early vintages the 

optimal carbon price was in the range of $12 - 15 per ton of carbon, all in 2005 US dollars. 

The major factors accounting for the increase in the optimal carbon price are a major 

upward revision of global output, particularly those associated with adoption of PPP 

income measurement, a higher assumed temperature sensitivity, and a lower discount rate 

on goods (Nordhaus 2007). 

 The results can also be compared with the latest round of model comparisons done for 

the Energy Modeling Forum 22 or EMF-22 (Clarke et al. 2009). The closest comparison is 

the path of CO2 concentrations for the 2000-2100 period for the RICE baseline and the EMF 

reference path. The RICE concentrations path is above the median of the 10 models with 

complete data. For the terminal year of 2100, the 10th, 50th, and 90th percentiles of CO2 

concentrations for EMF-22 are 643, 754, and 910 ppm, whereas the RICE projection for 2100 



36 
 

is 793 ppm (see Figure 11 for a more detailed comparison). The EMF projections also 

indicate the difficulty of attaining the 2 °C objective. 

 Note that the optimal carbon prices in the RICE model are well below those in studies 

with very low discount rates, particularly those in the Stern Review (2007). Discussions 

about discounting involve unresolved issues of intergenerational fairness, aversion to 

inequality, projections about future technological change and population growth, as well as 

the appropriateness of the utilitarian framework used in the Ramsey model. We review 

these issues in the section on discounting below. 

 The conclusion here about the Copenhagen accord parallels that of Rogelj et al. (2010), 

who conclude, “If nations proceed on the basis of the few pledges they have made for 2050, 

the Copenhagen Accord will almost certainly miss its own 2 °C goal. Our model shows a 

greater than 50% chance that warming will exceed 3 °C by 2100.” 

  

III.F. Qualifications with the Results 

 Analyses using integrated assessment economic models present an unrealistically 

smooth picture of the functioning of economic and political systems, in much the same way 

that global climate models abstract from the turbulence of weather systems. The major 

difficulties with all IAMs are the problems associated with estimation and validation of the 

models. Because the models make projections well into the future, it is difficult to find a 

reliable approach to estimating the relationships from appropriate historical or cross-

sectional data. Additionally, some of the elements, such as the optimization structure, have 

no obvious empirical counterpart.  

 Experience has shown two facts that should provide major cautions to users. First, 

different vintages of the same model often show dramatic changes in the results. The 

examples cited in the last section for the DICE/RICE models are interesting in this respect 

because they have a long history of published projections on which to base comparisons. 

Second, as can be seen with the EMF-22 results, different models have widely varying 

projections of future conditions. For example, the projections for CO2 emissions for 2100 

from the different EMF-22 models in the baseline range from 43 to 131 billion tons of CO2 

per year.  
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 At the same time, it is critically important to recognize that the key issue about the 

uncertainty about long-term projections is whether they have a large impact upon current 

policies, such as the current optimal carbon tax or emissions control rate. Table 10 

illustrates the impact of one of the most important parameters on the near-term carbon 

prices. The elasticity of the carbon price with respect to the TSC is close to unity. The 

elasticities for of other parameters differ considerably, with that of the fossil fuel supply 

being close to 0, that of the cost of the backstop technology being 0.26, and that of the rate 

of decarbonization being -0.008. The elasticity of current policy with respect to other 

parameters is an important subject of research for determining the importance of 

uncertainties of different variables. 

 

IV. Some Major Issues for Research in Integrated Assessment Modeling 

 

IV.A. Introduction 

 In this final section, I review some of the major issues that arise in the construction, 

design, and interpretation of IAMs. Some of these are local to climate change, while others 

pertain more broadly to integrated modeling involving economics across different fields. 

This is necessarily an incomplete treatment and one that reflects the experience, tastes, and 

knowledge of the author. But most of the issues discussed here are ones that have been 

major sources of concern and even controversy among modelers and users of IAMs. 

 

IV.B.  The social cost of carbon  

 A new and important concept emerging from IAMs is the “social cost of carbon” or 

SCC (the first reference is apparently Pearce 2003). This concept represents the economic 

cost caused by an additional ton of carbon dioxide emissions (or more succinctly carbon) or 

its equivalent. In a more precise definition, it is the change in the discounted value of the 

utility of consumption denominated in terms of current consumption per unit of additional 

emissions. In the language of mathematical programming, the SCC is the shadow price of 

carbon emissions along a reference path of output, emissions, and climate change. 

 In an optimized climate policy (abstracting away from the deadweight losses of other 

taxes and the complications due to tax or regulatory distortions), the social cost of carbon 
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will equal the carbon price or the carbon tax. In an uncontrolled regime, the social cost of 

carbon will generally exceed the (zero) carbon price. There is some confusion about the 

path along which the SCC should be calculated. For most purposes, it should refer to the 

marginal damages along the actual path of emissions and output (or some distribution of 

that in a stochastic framework). 

 Estimates of the SCC are a critical ingredient in climate-change policy. They provide 

policy makers a guidepost to aim for if they are seeking an economically efficient policy for 

carbon pricing. Another application is for rulemaking where countries do not have 

comprehensive policies covering all GHGs. In this context, regulators might use the SCC in 

a calculation of social costs and benefits of policies involving energy or climate-affecting 

decisions. For example, the US government has undertaken rulemaking proceedings to 

determine the SCC for use in such areas as subsidies for the installation of low carbon 

energy sources, regulations requiring energy efficiency standards in buildings and motor 

vehicles, and rebates for home insulation materials (see the discussion by the U.S. Working 

Group in US Regulatory Impact Analysis 2010 and also discussed in Greenstone et al. 

2011).  

 There have been many estimates of the SCC in different models (See Tol 2005, 2009 for 

reviews). Tol has undertaken a systematic research synthesis (inaccurately called a meta-

analysis) and has calculated a (subjectively determined) quality-weighted mean of the 

results of the different estimates. The most recent estimate finds a SCC of $36 per ton 

carbon (for the median of the Fisher-Tippett kernel density for peer-reviewed estimates 

with a 3% pure rate of time preference, without equity weights, adjusted to 2005 and 

2005$). Another study was undertaken by the US Working Group on the social cost of 

carbon (US Working Group 2010 and Greenstone et al 2011). 

 We have collected three different estimates for the SCC in Table 11. These are from the 

RICE-2010 model, from the Tol data base, and from the U.S. Working Group. They have 

been grouped according to the discount rate on goods or consumption. The estimates for a 

5 percent per year discount rate are similar for the Tol data and the RICE-2010 model. The 

U.S. Working Group estimates are lower than the SCC estimates from the other two 

sources. The major difference among studies is usually due to different treatments of the 

discount rate, as shown in Table 11 (also see Nordhaus 2011a). 
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 The work on the SCC has proven an important application of IAMs. It is important to 

better understand the assumptions underlying the estimates if they are to be used for 

policy purposes. 

 

IV.C. Complexity and transparency 

  One of the major issues in all integrated assessment models is the problem of 

transparency. Models are generally either scientifically acceptable and opaque – or highly 

simplified and relatively transparent. This problem is seen in the great difficulty most 

researchers have had in exporting their models to other groups. I will use the example of 

the DICE/RICE models to illustrate the difficulties. 

 Even though the DICE and RICE models are extremely simplified in many areas, they 

remain complex non-linear systems with several poorly determined relationships. The 

DICE model shown above has 18 dynamic equations which contain 44 non-trivial 

parameters (omitting straightforward initial conditions such as world population, output, 

and global mean surface temperature anomaly). Some of these parameters are relatively 

inconsequential (such as the capital elasticity in the production function). Others are central 

(such as the temperature sensitivity for CO2 doubling or the rate of growth of total factor 

productivity). Additionally, the structural equations are invariably aggregates of 

complicated non-linear spatial and temporal relationships, and they are likely to be 

difficult to determine exactly and are probably misspecified.  

 Even though it is one of the simplest of the models with regional resolution, the RICE-

2010 model is very complicated. In the Excel version, each of the 12 regions has 118 

variables (including identities), and the global calculations and calibration add circa 

another 1000 variables, for a total of approximately 2400 variables. Because of the need to 

solve the model using the Negishi algorithm, the RICE model requires an Excel macro to 

solve for the Negishi weights. This means that it is difficult for users other than the model 

developers to actually use such complex models. Because of its difficulty, the RICE model 

has been adopted by at most a single digit number of groups, and in most cases there was 

substantial recoding necessary. 

 These difficulties are representative of other models. Small and transparent models are 

sometimes adopted by other researchers or used by students, but the large models are very 
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seldom transferable. The DICE model is sufficiently simple that many researchers have 

used it. It has been recoded in GAMS and has been coded in different modeling languages. 

After about two decades of experience, it seems likely that the modeling output is correct 

even if the assumptions of the model are subject to debate. 

 The problems with complex models are illustrated with the example of the OECD 

GREEN model. When the MIT EPPA model was in the design phase, it was decided to 

begin with the GREEN model. GREEN was coded in C+ and the printed source codes were 

a large volume consisting of tens of thousands lines of code. It was found to be next to 

impossible to change model structure and design meaningful counterfactual scenarios. The 

MIT team decided to recode the model in GAMS in MPSGE, which required only a few 

pages of code. As the recoding proceeded, a problem with the price-determination 

algorithm was discovered, and the GREEN results were never replicated in GAMS. It 

seems unlikely that the mistake would ever have been uncovered if it had not been 

recoded. 

 This example is not intended to disparage the GREEN model or to discourage more 

detailed models. Rather, it illustrates some of the difficulties that arise with the use of large 

computerized modeling structures. The difficulties of transferring and validating models 

are not uncommon for large computerized systems in a wide variety of fields. The lesson is 

that the major way in which large models can be tested and validated is through 

construction of alternative models by other research groups. 

  

IV.D.  Positive versus normative models 

 One of the issues that pervades the use of IAMs is whether they should be interpreted 

as normative or positive. In other words, should they be seen as the recommendations of a 

central planner, a world environmental agency, or a disinterested observer incorporating a 

social welfare function? Or are they meant to be a description of how economies and real-

world decision makers (consumers, firms, and governments) actually behave? This issue 

arises particularly in the analysis of the discount rate that we review in the next section. 

 For most simulation models, such as general circulation climate models, the 

interpretation is clearly that these are meant to be descriptive. The interpretation of 

optimization models is more complex, however. In some cases, the purpose is clearly 
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normative. For example, the Stern Review represented an attempt to provide normative 

guidance on how to cope with the dangers raised by climate change. In other cases, such as 

baseline projections, these are clearly meant to be descriptive. 

 The ambiguity arises particularly because many models use optimization as a 

technique for calibrating market outcomes in a positive approach. This is the interpretation 

of “market mechanisms as maximization or minimization devices.” The question was 

addressed in the MRG report chaired by Tjalling Koopmans, “The use of optimization in 

these models should be seen as a means of simulating, as a first approximation, the 

behavior of a system of interacting competitive markets.” (MRG 1978, p. 5, emphasis 

added.) 

 This point was elaborated at length in the integrated assessment study of copper by 

Gordon, Koopmans, Nordhaus, and Skinner (1987, with minor edits to simplify and 

emphasis added): 

We can apply this result to our problem of exhaustible resources as follows: if 

each firm is faced with the same market prices for its inputs and outputs, and if each 

firm chooses its activities so as to maximize the firm's discounted profits, then the 

outcome will be economically efficient. In more precise language, such an 

equilibrium will be economically efficient in the sense that (1) each firm will provide 

its share of the market at minimum discounted cost; and (2) the requirements of the 

market will be met by producers in a manner that satisfies total demand at 

minimum discounted total cost to society. 

Examining these two conditions, we see that our competitive equilibrium has 

indeed solved a minimization problem of sorts – it has found a way of providing the 

appropriate array of services at lowest possible costs. But this minimization is 

exactly the objective of a linear-programming problem as well. Consequently, we 

can mimic the outcome of the economic equilibrium by solving the LP problem that 

minimizes the same set of cost functions subject to the same set of technical 

constraints. Put differently, given the appropriate quantities of resources available 

and the proper demand requirements, by solving a cost-minimizing LP problem we 

can determine the equilibrium market prices and quantities for all future periods. 

We call this lucky analytical coincidence the correspondence principle: determining 
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the prices and quantities in a general economic equilibrium and solving the embedded cost-

minimization problem by linear programming are mathematically equivalent.  

  

 This discussion implies that we can interpret optimization models as a device for 

estimating the equilibrium of a market economy. As such, it does not necessarily have a 

normative interpretation. Rather, the maximization is an algorithm for finding the outcome 

of efficient competitive markets. Particularly if the distribution of endowments across 

individuals, nations, or time is ethically unacceptable, then the “maximization” is purely 

algorithmic and has no compelling normative properties. 

 This approach has another subtle requirement that is often overlooked. To use 

optimization as a solution technique, it is necessary that the solution cannot be improved 

when there are zero external effects. For example, with zero externalities, it should not be 

possible to improve the outcome by changes in savings rates or energy use. If this condition 

is not met, then the solution to the optimization with externalities may find an incorrect 

policy that arises from the initial deviation of the solution from the optimum rather than 

from appropriately responding to the externality. 

 This point is shown in Figure 12. We show two objective functions, W(u) and V(u), 

which are functions of an environmental control variable, u. The function W(u) assumes 

that there is no externality (no damages from GHGs in our example); while V(u) assumes 

there is an externality, so the market solution produces an inefficient outcome. In the W(u) 

case, all spillovers are internalized, while in the V(u) case some spillovers are not 

internalized. In the no-externality case of W(u), an appropriate algorithm would find the 

optimum at u = 0 (reflecting the efficiency of the market equilibrium). With a negative 

externality, as in the case of V(u), an increase in the control variable would initially increase 

economic welfare. Hence, W’(0) = 0 while V’(0) > 0.  

 A correctly calibrated model would ensure that W’(0) = 0; that is, the algorithmic 

maximum would come at u = 0. If the model is incorrectly calibrated, so that W’(0) ≠ 0, then 

the value of the policy for externality correction is incorrectly calculated. Put differently, 

the model should find that welfare is unaffected by changes in optimized variables (such as 

changes in mitigation in a situation where mitigation perfectly internalizes the 

externalities). Such a mistake might occur if the model were constructed with parameters 
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that implied that the competitive equilibrium was not optimal. This might lead to an 

incorrect global warming policy to correct a non-global-warming defect. This illustrates 

why in the DICE/RICE models, the models are calibrated without damages so that W’(0) = 

0 for all control variables. 

 

IV.E. The discount rate 

 Controversies involving the discount rate have been central to global warming models 

and policy for many years. The economic theory of discounting, which has been a relative 

obscure topic in public finance and project analysis, assumes great prominence in climate-

change IAMs because of the long delays between investments in abatement and returns in 

averted damages. However, notwithstanding the extensive discussions, discounting is just 

as contentious as it was at the dawn of the studies in this area. I will review some of the 

issues in this context. 

 Discounting involves two related and often confused concepts. One is the idea of a 

discount rate on goods, which is a market-based concept that measures a relative price of 

goods at different points of time. This is also called the real return on capital, the real 

interest rate, the opportunity cost of capital, and the real return. The real return measures 

the yield on investments corrected by the change in the overall price level. In principle, this 

is observable in the marketplace, although the exact numbers differ on the risk 

characteristics of the return involved. For example, the real return 10-year U.S. Treasury 

securities over the period 1960-2000 averaged 3.0 percent per year. Similarly, the real pre-

tax return on U.S. corporate capital (a risky investment) over the same four decades has 

averaged about 6.6 percent per year. Estimated real returns on human capital range from 6 

percent per year to 20-plus percent per year depending upon country and time period. In 

the studies used for the DICE/RICE models, I generally use a benchmark real return on 

capital of around 6 percent per year. Since taxes are excluded in the DICE/RICE models, 

this is the real discount rate on consumption as well. 

The second important discount concept involves the relative weight of the economic 

welfare of different households or generations over time. This is called the pure rate of 

social time preference, but I will denote it the generational discount rate for clarity. It is 

calculated in percent per unit time, like an interest rate, but refers to the discount in future 
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welfare, not in future goods or dollars. A zero generational discount rate means that future 

generations into the indefinite future are treated symmetrically with present generations; a 

positive generational discount rate means that the welfare of future generations is reduced 

or “discounted” compared to nearer generations. Philosophers and economists have 

conducted vigorous debates about how to apply generational discount rates in areas as 

diverse as economic growth, climate change, energy policy, nuclear waste, major 

infrastructure programs such as levees, and reparations for slavery (see Portney and 

Weyant 1999, Arrow et al. 1996 as examples). 

 While the concept of discounting is a very broad philosophical and ethical question, 

most analyses of the discounting issue in the economic and IAM literatures use the 

approach of the Ramsey-Koopmans-Cass model of optimal economic growth (Frank 

Ramsey 1928, Tjalling C. Koopmans 1965, David Cass 1965). This is precisely the model of 

growth underlying the DICE model and will be used in this discussion. The major point to 

recognize is that the economic units in the economy are generations or cohorts. Similarly, 

the key parameters are α (the elasticity of utility with respect to a generation’s 

consumption, or consumption elasticity) and ρ (the generational discount rate). We 

suppress the details of the decision-making of the generation such as the time profile of 

consumption, life span, working and leisure, as well as individual preferences such as 

personal risk aversion and time preference as distinct elements not specifically related to 

the social choices. 

 One of the major confusions about discounting is whether the variables apply to the 

welfare of different generations or to individual preferences. In the DICE/RICE 

framework, the relationships emphatically concern generations. The individual rate of time 

preference, risk preference, and utility functions do not enter directly into the concepts. An 

individual may have high time preference, or perhaps hyperbolic discounting, but this has 

no necessary connection with how social decisions should weight different generations. 

Similar cautions apply to the consumption elasticity, which relates to the social valuation of 

inequality across different generations and not to individual risk preference.  

 Optimizing the social welfare function with a constant population, no risk or taxes, 

and a constant rate of growth of consumption across different generation, g*, yields the 

standard equation for the relationship between the equilibrium real return on capital, r* , 
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and the other parameters, r* = ρ + αg*. This is usually called the Ramsey equation. The 

Ramsey equation shows that in a welfare optimum under simplified conditions, the rate of 

return on capital is determined by the generational discount rate, the consumption 

elasticity, and the rate of growth of generational per capita consumption. 

 There are two ways of using the Ramsey equation as a framework for discounting in 

global warming or other long run questions. One is the prescriptive view, in which analysts 

argue for particular values of the ethical parameters, ρ and α, and from this derive the 

ethically appropriate discount rate on goods. This is the approach taken in Cline (1994) and 

the Stern Review (2007). The latter argues that it is indefensible to make long-term 

decisions with a positive generational discount rate: “[Our] argument … and that of many 

other economists and philosophers who have examined these long-run, ethical issues, is 

that [a positive generational discount rate)] is relevant only to account for the exogenous 

possibility of extinction.” The generational discount rate used in the Stern Review is 0.1 

percent per year, which is justified by estimates of the probability of extinction. The Stern 

Review further assumes a consumption elasticity of α = 1 and a long run growth rate of g* 

= 1.3 percent per year, which leads to a real interest rate (discount rate on goods) of 1.4 

percent per year. A similar approach was endorsed by Cline (1994). 

 A second approach is the descriptive approach, advocated by Lind and Ruskin (1982), 

Lind (1995), and Nordhaus (1994), and which is the approach in the DICE/RICE models. 

This approach assumes that investments to slow climate change must compete with 

investments in other areas. The benchmark for should therefore reflect the opportunity cost 

of investment. If we interpret the IAMs in the framework of “markets as maximization 

simulations” as discussed above, then the real interest rates in the model (as with other 

prices and outputs) are calculated to reflect market prices. In this interpretation, there is no 

ethical presumption that these are the correct prices or interest rates, but they should reflect 

market realities. It is inefficient, in the descriptive view, to accept investments in climate 

mitigation with a yield of 1.4 percent per year if there are available investments in 

education or capital with yields of 6 percent per year. 

The need to consider opportunity costs can be seen starkly in considering the 

appropriate discount rate to use in 2011 in countries that are severely constrained such as 
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Greece or Spain. It hardly seems appropriate to use the idealized normative approach for a 

country that cannot even finance its schools and public services. 

 In the descriptive view, the relevant equation is still the Ramsey equation, but the 

primitives are the rate of return (r*) and the growth rate (g*), and the other two parameters 

must be calibrated to be consistent with observed market realities. The calibration for 

DICE-2010 is slightly different from these equilibrium calculations because of population 

growth and changing consumption growth, but we can use the equilibrium calculations to 

give the flavor of the results. In the baseline empirical model, I adopt a generational 

discount rate of 1½ percent per year with a consumption elasticity of 1½. These yield an 

equilibrium real interest rate of 5 percent per year with the consumption growth that is 

projected over the next century by the model. 

 Most of the debate about discounting has concentrated on the ethical concerns with 

using a positive generational discount rate. But the goods discount rate in the normative 

Ramsey framework is determined by two ethical parameters and one economic parameter. 

If we start with the fundamental Ramsey equation, r* = ρ + αg*, note that we have two 

observable parameters (r and g) and two unobservable ethical parameters ( ρ and α). A low 

real interest rate in the prescriptive view cannot be justified by a zero generational discount 

rate alone, but also depends upon the consumption elasticity, the growth rate of 

consumption, and in a world of non-zero population growth that influence as well. 

Similarly, observations on the real interest and growth rates are insufficient to determine 

the generational discount rate in the descriptive view. In both, there is one free parameter. 

This implies that they are observationally equivalent in a steady state. This point has been 

widely ignored in the debates over discounting. 

 The point about the insufficiency of generational discounting alone can be illustrated 

using the DICE model calibration. Table 13 shows how different combinations of α and ρ 

lead to alternative real interest rates and climate change policies as reflected in the SCC. 

The top line shows the standard DICE/RICE calibration, which leads to a social cost of 

carbon of $55 per ton carbon and a real interest rate of 5.3% per year. The Stern Review 

assumptions in the DICE model lead to a much higher SCC, but also a much lower interest 

rate. If we use the low generational discounting and calibrate to match the DICE model real 

interest rate, the required consumption elasticity needed to calibrate goes from the DICE 
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value of α = 1.5 to around α = 2.0. The SCC rises in the recalibration, but note that it is 

less than one-tenth of the values implicit in the Stern Review’s low generational discount 

and low consumption elasticity. The main point of this example is that the generational 

discount rate is not sufficient to determine the goods discount rate. The exact calibration 

can have a major impact on the SCC and therefore on the optimal climate policy. Table 13 

shows as well how sensitive policy is to the discounting assumptions.   

 One further complication is the need to consider risk in the context of climate 

investments. Should the discount rate on abatement include a risk premium, and if so how 

large should it be? This issue has been largely ignored in the IAM literature. If we assume 

that the equity premium is determined in markets as a systematic and justifiable premium 

on risky assets, then we would need to investigate the risk characteristics of investments in 

climate change. This is the subject of a vast literature on the consumption capital asset 

pricing model and the equity premium (see Mehra 2008). Analysis in Nordhaus (2007, 

2011a) indicates that the returns on abatement investments share the risk characteristics of 

consumption, so it would appear that a discount rate appropriate to risky investments 

would be appropriate for abatement investments. In other words, the discount rate for 

climate investments should include the equity premium. 

  The ethical attractiveness of very low generational discounting continues to 

dominate the debate on the appropriate discount rate in climate change. There is little a 

priori appeal to approaches that explicitly discriminate against future generations. But 

research on the properties of zero discounting has uncovered deep paradoxes that remain 

unanswered today (Koopmans 1965). Zero discount rates lead to incomplete preference 

structures. The paradox of low discounting can be illustrated with a “wrinkle experiment.” 

Suppose that scientists discover a wrinkle in the climate system that will cause damages 

equal to 0.1 percent of net consumption starting in 2200 and continuing at that rate forever 

after. How large a one-time investment would be justified today to remove the wrinkle that 

starts only after two centuries? Using a near-zero discount rate of the kind proposed by the 

Stern Review, the answer is that we should pay a substantial fraction of a year’s 

consumption today to remove the wrinkle (see Nordhaus 2007). 

 This result is a reminder of the warning Tjalling Koopmans made in his path 

breaking analysis of discounting in growth theory half a century ago. “[T)he problem of 
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optimal growth is too complicated, or at least too unfamiliar, for one to feel comfortable in 

making an entirely a priori choice of [a generational discount rate) before one knows the 

implications of alternative choices” (Koopmans 1965). This conclusion applies with even 

greater force in global warming models, which have much greater complexity than the 

simple, deterministic, stationary models that Koopmans analyzed.  

 

IV.F. Uncertainty for thin-tailed distributions  

 If global warming is the mother of all public goods, it may also be the father of decision 

making under uncertainty. In terms of model structure, every equation (except for the 

identities) contains major unresolved questions. Among the important uncertainties are the 

pace of economic growth in different regions, the damages in different regions, the pace at 

which developing countries move their labor forces and economies out of agriculture, 

future tastes for environmental goods and services, and the potential for competitive, low-

carbon energy source. There are major differences among scientists and economists on the 

answers to these questions, and it seems fair to conclude that there are unlikely to be 

definitive answers in the next few years. Moreover, we do not know how fast these 

uncertainties will be resolved, or what kinds of investments in learning would help resolve 

the uncertainties. 

 Since we cannot resolve these issues about the deep future, we can instead focus our 

research on what is after all the relevant question for environmental and economic policies 

-- the impact of uncertainties on near-term policies (such as the control rate or the optimal 

tax on GHGs). It is surely the case that we have a very imprecise estimate of recoverable 

carbon fuels and can estimate this only within an order of magnitude. But suppose that 

uncertainty about the total fossil fuel resources has little influence on near-term policies. 

Then we can say that this variable is a less important uncertainty than one, say like the 

economic growth rate, which has a major effect on near-term policies. 

 There is a substantial literature on uncertainty in climate change. Major studies include 

Manne and Richels (1992), Peck and Teisberg (1993), Nordhaus and Popp (1997), Nordhaus 

and Boyer (2000), Webster (2002), and Hope (2006). IAMs differ in their approach to 

uncertainties. Some models (including the basic DICE and RICE models) take the first step 

of analyzing the economics of global warming under the assumption of perfect foresight or 
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certainty equivalence. A certainty-equivalent approach provides the basic intuition about 

the economics of alternative approaches. It also provides a first approximation to a 

complete answer under certain conditions (such as where risk aversion is relatively low, 

functions are relatively linear, or risks are relatively small). Other models (such as the 

PAGE model as in Hope 2006) emphasize uncertainties and spend considerable effort in 

modeling the structure of uncertainties. 

 For the present survey, it is useful to distinguish second-moment uncertainty (which is 

the subject of the present section) from higher-moment uncertainty (which is discussed in 

the next section). Second-order uncertainty examines the impact of the second moment of 

distributions (dispersion around the mean) assuming that the distributions are normal or 

close to normal. This can be described as “thin-tail uncertainty” in the sense that it 

examines the effects of uncertainty assuming that the tails of the distribution do not 

dominate the effects of uncertainty. The most recent comprehensive study for the DICE 

model (Nordhaus 2007) examined the implications of uncertainty about eight major 

variables on the optimal climate-change policy and other variables assuming that the 

distribution of the variables was normal. This study found that the impact of second-order 

uncertainty was relatively small. In other words, best-guess or certainty-equivalent policy 

seemed a good approximation for the policy in which a full expected-utility framework is 

used. This finding is consistent with findings of other studies (see Cropper 1976, Kolstad 

1996, Pizer 1999, Yohe and Tol 2010). However, as we will see in the next section, 

introducing non-linearities and more extreme parameter values can lead to completely 

different results. 

 One reservation to these results is that the studies in which thin-tailed uncertainty is 

relatively unimportant usually have structures in which there are no sharp discontinuities. 

If discontinuities are both sharp and relatively near-term, then this conclusion may not 

hold. (See Baranzini, Chesney, and Morisset 2003 as an example.) 

 

IV.G. Higher-moment uncertainty (“fat tails”) and catastrophic climate change 

 Recent research has emphasized the issue of the potential for “fat tails” in the 

distribution of uncertain parameters and the risk of catastrophic climate change. We label 

this “higher-moment uncertainty” to indicate that it is concerned with “tail events.” The 
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issue arises because of the combination of outcomes that are potentially catastrophic in 

nature and have probability distributions with fat tails. The combination of these two 

circumstances may lead to situations in which our standard analyses needs to be modified 

or may even break down.  

 A tail event is an outcome which, from the perspective of the frequency of historical 

events and normal probability distributions, should happen only extremely infrequently. 

Statisticians have known for many years that events with fat tailed distributions may 

behave in an unintuitive way. Relatively little work has examined the implications of fat 

tails for economic modeling and policy. In a recent series of papers, Martin Weitzman (see 

especially 2009) has proposed a dramatically different conclusion from standard analysis in 

what he has called the Dismal Theorem. In the extreme case, the combination of fat tails, 

unlimited exposure, and high risk aversion implies that the expected loss from certain risks 

such as climate change is infinite and we therefore cannot perform standard optimization 

calculations or cost-benefit analyses. 

 There has been virtually no work applying Weitzman’s insights in empirical IAMs. 

The question is particularly demanding because it requires estimating the shape of the tails 

of distributions for events, such as damages to future consumption, where there is very 

sparse experience on which to estimate the distribution. Some analysts have used 

theoretical approaches (see Heal 2008) or highly stylized models (see Weitzman 2010).  

 A slightly different way of posing the issue is to examine the conditions under which 

extreme parameter values might produce catastrophic outcomes for climate change using a 

standard IAM. This section sketches such an approach. Begin with a definition of 

“catastrophic climate change.” In this discussion, I define a catastrophic outcome as one in 

which world per capita consumption declines at least fifty percent below current levels for 

an extended period. This would represent a decline of at least 90 percent below a reference 

level for most assessments (Stern Review 2007, Nordhaus 1994a, 2010 and EMF-22). So by 

catastrophic, we mean damages from climate change far larger than what is envisioned in 

the direst of current IAM projections. 

 Designing scenarios which might lead to extreme outcomes is in itself a major research 

task. An important study by Frank Ackerman, Elizabeth A. Stanton, and Ramón Bueno 

(2010) shows the complicated interaction of catastrophes, fat tails, and empirical analysis. 
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They use a variant of the DICE-2007 model and examine distributions for two parameters, 

the temperature sensitivity coefficient (TSC) and the damage function exponent (DFE). The 

TSC is a function of the parameters in equation (17) above, while the DFE is the coefficient 

“2” on the last term equation (6) above.  

Their results show an interesting feature. They found that that uncertainty about 

either the temperature sensitivity or the damage exponent alone has little effect on the 

optimal abatement strategy. However, if both of the parameters take high values, then 

there is potential for catastrophic outcomes, and relying on the best-guess parameters can 

be very misleading. In extreme cases, very sharp increases in mitigation are necessary to 

prevent a major economic decline. 

 I have followed the approach used by Ackerman et al. 2010 to illustrate their points. 

Based on existing studies and several DICE model experiments, I settled on the following 

three conditions as important ingredients for producing extreme outcomes. A first 

condition is that the economic and geophysical systems lead to large climatic changes in 

the absence of effective policy measures. As in other studies, the simulations below 

examine a high temperature sensitivity coefficient as an example of unfavorable climatic 

conditions. A second ingredient is the potential for catastrophic damages at levels of 

climate change that might arise from the first condition. Most damage functions in the 

climate-change literature would not lead to catastrophic damages as defined here for large 

temperature changes. A damage function that has sharp threshold effects would be 

required to lead to catastrophic outcomes. 

 A final requirement is a policy failure. This means either that scientists fail to 

understand the nature of the climate-society system in a timely fashion, or that societies fail 

to take steps to reduce the threat of catastrophic climate change. If the threat is understood, 

then there seems little doubt that it is technologically and economically possible to reduce 

emissions to essentially zero in a short time period; the costs might be large but would not 

be ruinous. In addition, we will examine the role of the generational discount rate because 

low discount rates have often been justified by the possibility of catastrophic climate 

change. 

 To combine these possibilities, I took the DICE model as described above and 

considered “extreme values” in four areas: (1) a much higher temperature sensitivity 
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coefficient (TSC = 10), (2) high convexity of the damage function at a threshold of 3 °C 

(exponent or DFE = 6 for “convex”), (3) a policy failures represented by inability to take 

actions that will reduce emissions (“no policy”); and (4) a near-zero pure rate of time 

preference (“low discounting”). 

 For each of the parameters, we consider a “base value,” which is the one used in the 

standard DICE model, along with an “extreme value,” which is represented by one of the 

four cases just described. We do not attach any probabilities to the extreme outcomes. 

Rather, these might be considered the realization of a process which had fat tails and in 

which the probabilities of these outcomes is non-negligible. Table 14 shows the parameters 

considered in the runs below. We make runs for 600 years with different combination of 

parameters and policy assumptions. 

 The results for salient variables are shown in Table 15. The first numerical row shows 

the social cost of carbon (SCC) for 2015. This is a useful indicator of the damages from 

additional carbon emissions. The first five columns show the results of taking each of the 

extreme values of the parameters with policy. The SCC ranges from $42 per ton of carbon 

($/tC) in the standard case to $350 in the most unfavorable case. The impact on economic 

welfare is large but not catastrophic, with a decline of around 2 percent of welfare or 

consumption annuity in the worst case. (The consumption annuity is the constant level of 

per capita consumption that gives the same level of utility as the case in question.) 

 The cases without policy are shown in the last four columns of Table 15. As in Ackerman 

et al. (2010), either high TSC or steep damage plus no policy are not sufficient to lead to the 

catastrophic results. High damages plus no policy (with a tipping point of 3 °C) does lead 

to a very steep loss. However, the genuinely catastrophic results, in the sense used here, 

require all three conditions: high TSC, high convexity of the damage function, and no 

policy, as shown in the last column. When all three of these conditions are met, the 

consumption annuity declines 96 percent relative to the baseline. The catastrophic nature of 

the extreme values is signaled by an initial SCC that is more than $5100 per ton of carbon 

(this being indicative but unreliable because of computational difficulties). 

 A further important comparison is the column labeled “1+3+4” with “2+3+4.” This 

shows the importance of policy to avoid the catastrophic outcomes where all parameters 

take their extreme value. Note as well that according to the DICE model structure, the 
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world is not yet irreversibly on course for a catastrophic outcome even with the most 

unfavorable parameters. In all cases examined, a vigorous mitigation policy is able to 

prevent the world from going over the catastrophic threshold. 

 These results are only suggestive because they examine only a small part of parameter 

space. They suggest, first, that none of the extreme parameter values taken singly produces 

catastrophic outcomes. Additionally, as long as there are no policy failures and mitigation 

policies are taken quickly for the catastrophic cases, no combination of extreme values 

examined here is sufficient to lead to catastrophic outcomes. Third, discounting is a second-

order issue in the context of catastrophic outcomes. A high discount rate will slow 

mitigation, but it does not by itself produce policies that would lead to future catastrophes. 

If the future outlook is indeed catastrophic, and if that situation is understood, and if 

policies are taken, the discount rate has little effect on the estimate of the social cost of 

carbon or on the optimal mitigation policy. 

 This leads to the fourth and major finding of our investigation: all of the three extreme 

conditions must hold to obtain the catastrophic outcome. That is to say, there must be high 

temperature sensitivity plus catastrophic damages plus policy failure. The intuition is that a 

high TSC produces a steep temperature trajectory. The steep temperature trajectory 

produces catastrophic damages when the damage function is extremely convex. But to 

these we must add that countries do not take steps to prevent the chain of catastrophic 

events. 

 In the end, the major result is the importance of “policy.” As long as policy does not 

fail, the world economy can avoid catastrophic outcomes. However, we should not think of 

policy in a mechanical fashion as simply turning an emissions-control dial to the 

appropriate level and then going about the rest of our daily lives. Rather, policy involves a 

continuing series of difficult steps. It requires understanding the complicated geophysical 

and socioeconomic dynamics of climate change and economic growth over many decades; 

it requires solving the global public goods problem by gathering most nations together to 

take collective action; and it means designing a mechanism for ensuring that emissions-

control policies are reasonably efficient and effective. None of these is easily accomplished, 

but taken together they are sufficient to overcome a set of outcomes that would otherwise 

be catastrophic for the human condition.  
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 The issues raised by fat tails, or by extreme values and catastrophic outcomes, is one of 

the most difficult open questions in climate change science, economics, and policy. The 

nature of extreme outcomes – both their rarity and their extremity – implies that it is 

virtually impossible to have a secure understanding of the likelihood and severity of 

extreme events.  

  

IV.H.  Strategic considerations and the game-theoretic aspects of climate-change policy 

 One of the central issues in climate change policy is the fact that it involves many 

countries for many time periods. No single country or generation can reduce emissions 

sufficiently to ensure that there are no dangerous interferences with the climate system. 

The calls for cooperation and for meeting ambitious targets collide with the incentives of 

individual countries and generations. While current policy is often called myopic, a more 

appropriate diagnosis is that the world is locked into a non-cooperative equilibrium with 

no effective mechanism to break out. 

 A first issue arises because of the strategic relationship between costs of abatement 

(which are national) and avoidance of climate damage (which is a widely dispersed 

Samuelsonian public good). This structure of local costs and dispersed benefits leads to 

strong incentives to free riding: each country has little incentive to take action and will 

benefit greatly if everybody else abates.  

 This situation is analyzed using the concept of a Nash non-cooperative equilibrium 

from game theory. A Nash non-cooperative equilibrium results when no player can find a 

strategy to improve its payoff assuming that the other players stick to their strategies (Nash 

1950). A Nash non-cooperative equilibrium does not rule out any climate-change policies. 

Rather, non-cooperative behavior implies that countries take abatement actions only to the 

extent that they themselves benefit, and the benefits to the rest of the world are not 

included. 

  There is a substantial literature investigating the nature of climate-change policy using 

the non-cooperative framework (Carraro and Siniscalco, 1993, Barrett, 1994, Chander and 

Tulkens 1995, Nordhaus and Yang 1996, Peck and Tiesberg 1999). We can use the RICE-

2010 model to illustrate how a non-cooperative equilibrium can be calculated. This is 
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achieved by assuming that each region maximizes its objective function taking into account 

only its own costs and damages. By assumption, there is no signaling or cooperation. 

 Earlier studies have found that a Nash non-cooperative equilibrium would lead to 

carbon prices and emissions reductions that are much lower than optimal (see particularly 

Nordhaus and Yang 1996, Nordhaus 2010). Similar results are found in RICE-2010. If we 

assume each of the 12 regions acts non-cooperatively, carbon prices are calculated to be 

approximately one-tenth of the efficient levels (see Table 12). This may actually overstate 

non-cooperative abatement because it assumes that countries within large regions such as 

Latin America coordinate their strategies. The strategic significance of this finding is 

twofold: First, the overall level of abatement in the non-cooperative equilibrium will be 

much lower than in the efficient (cooperative) strategy. A second and less evident point is 

that countries will have strong incentives to free ride by not participating, or not to comply 

fully with strong climate-change agreements if they do participate. If they hide emissions 

or overstate reductions, their own economic welfare will improve even though others’ 

welfare will deteriorate. This second point is seen in the Kyoto Protocol, where it seems 

likely that many countries outside of the EU will end up exceeding their allowable 

emissions. 

 The difficulty of escaping from a low-level noncooperative equilibrium is amplified by 

yet another factor, the intertemporal trade-off. The non-cooperative equilibrium shown in 

Table 12 may overstate the degree of cooperation because of the intertemporal structure of 

costs and benefits. Climate-change policies require costly abatement in the near term to 

reduce damages in the distant future. The generational trade-off is shown in Table 9, which 

shows the intertemporal results for the Copenhagen Accord. The last line shows the 

difference in global discounted damages and discounted abatement costs through 2055 

between the outcome under the Copenhagen Accord and that in the baseline scenario. 

Abatement costs are more than 5 times the averted damages in this early period. For the 

period after 2055 (not shown), however, the ratio is reversed: averted damages are more 

than 4 times abatement costs. If the players are generations for each nation rather than 

nations, then the non-cooperative equilibrium will lead to close to zero abatement because 

virtually all the benefits lie outside the lifetimes of a given generation. The delayed payoffs 
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reinforce the incentives of the noncooperative equilibrium, so the temptation is high to 

postpone taking costly steps to reduce emissions. 

 

IV.I. Modeling Technological Change 

 Most studies and models of environmental and climate-change policy — indeed of 

virtually all aspects of economic policy — have sidestepped the thorny issue of 

endogenous technological change or induced innovation. These terms refer to the impact of 

economic activity and policy upon research, development, invention, innovation, and the 

diffusion of new technologies. Most IAMs assume that technological change is exogenous, 

that is, it proceeds with a rate and direction that is determined by fundamental scientific 

and technological forces but is unaffected by higher carbon prices or tax and regulatory 

incentives. 

 This shortcoming has been recognized for many years (see for example the discussion 

in the IAM review in Weyant et al. 1996). The assumption of exogenous technological 

change is used both because of the lack of a firm empirical understanding of the 

determinants of technological change as well as because of the inherent difficulties in 

modeling economic processes with externalities and increasing returns to scale. While we 

suspect that we know the direction of the omission of induced innovation — to 

overestimate the cost of emissions reductions and the trend increase in climate change — 

IAMs have had difficulty assessing the magnitude of the effect or the importance of this 

omission. Would including induced innovation have a large or small impact on climate 

change and on climate-change policies? This is a major open question. 

 There have been two approaches to including induced innovation – the research model 

and the learning model. The research model of induced innovation arose in the 1960s in an 

attempt to understand why technological change appears to have been largely labor 

saving. It emphasized that technological change is a public good that is produced by 

research, development, and innovation (Nelson 1959, Arrow 1962). More recently, this 

approach has been integrated into neoclassical economic growth theory in research such as 

Paul Romer (1990). The thrust of the research model is to emphasize investment in 

knowledge-improving activities, where those activities have strong public goods qualities.  
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 Virtually all studies of the research model have been theoretical. With few exceptions, 

they do not lay out a set of testable hypotheses or ones that can be used to model the 

innovation process at an industrial level. The difficulty of deploying well-specified and 

reliably estimated models has been a major impediment to widespread development of 

empirical models in the research-model tradition. There are but a handful of studies that 

incorporate the research-model approach. Work with the DICE model (Nordhaus 2002), the 

ENTICE model (Popp 2004) and the WITCH model (Bosetti et al. 2009) have developed the 

research-model approach in the context of climate change. One of the major findings is that 

the omission of endogenous technological change has a major impact on welfare but has 

only a small effect on the temperature path or on the path of the optimal carbon price 

(Popp 2004).  

 The alternative approach to modeling induced innovation is the learning by doing 

(LBD) model. This approach has become particularly widely used in recent years as models 

increase the granularity of the technological description down to individual technologies. It 

has also been attractive in policy studies because it can rationalize early investments in 

technologies that are presently uneconomical but have the promise, if they can “move 

down the learning curve,” of being competitive in the future.  

 Models of learning and experience have a long history in studies of manufacturing 

productivity. Useful references in economics include Kenneth Arrow (1961), Boyan 

Jovanovic and Yaw Nyarko (1995), while a survey of the field can be found in Louis Yelle 

(1979). Because of their perceived successes in technological forecasting, they have recently 

been introduced in policy models of energy and global warming economics to make the 

process of technological change endogenous. There is a vast body of energy and climate-

change-economics models using learning-by-doing; a useful survey is contained in 

Kenneth Gillingham, Richard G. Newell, and William A. Pizer (2008). 

 While LBD has the advantage of easy incorporation in models, it has serious dangers, 

as is recognized in Gillingham et al (2008). They write, “The primary disadvantage to 

learning-induced TC [technological change) is its reduced-form nature. LBD can be 

inserted mechanically into many models, but it is difficult to identify the mechanisms 

behind LBD—or even be confident about the causality. Learning-induced TC does not have 

a theoretical structure analogous to the IPF [innovation possibility frontier, or the research 
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model discussed above] on which R&D-induced TC is based. The ease with which learning 

curves can be estimated may give a false sense of comfort and precision that may belie the 

R&D or other resources that went into the technology development.” 

 In recent analyses on LBD in Nordhaus (2010), it is shown that there is a fundamental 

statistical identification problem in trying to separate learning from exogenous 

technological change and that the estimated learning coefficient (or learning curve slope) 

will generally be biased upwards. 

 This bias becomes particularly important in energy and global warming models which 

are designed to choose among different emerging technologies and where the technology is 

assumed to have an important learning component. For example, suppose that a policy 

calculation solves for future paths of solar and wind technologies based on current cost and 

different learning rates. Based on high learning rates, the model might suggest that a high-

cost but immature technology is a good bet for research and development. But this 

recommendation would be incorrect – that is, biased toward too high an investment in the 

rapid-learning technologies – if the learning coefficient is based on an upwardly biased 

estimate of learning rates. 

 The point to emphasize here is that, in analyses that pick technologies on the basis of 

total discounted cost of production (as is entirely appropriate), then an upward bias in the 

learning rate can have a major impact on the apparent benefit of technologies with 

learning. This danger is significant because of the tendency to estimate learning rates in 

bivariate relationships, which will generally lead to strong upward biases in the learning 

coefficient. 

 There is clearly much room for further development of models with endogenous 

technological change, but we should not underestimate the difficulties involved. 
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V. Final Thoughts 

 The present survey of integrated assessment models of climate change shows the 

enormous progress that the field has made over the two decades since its emergence. The 

progress is made possible by the parallel developments in fundamental science and 

economics across a broad range of areas. These include development in public economics, 

game theory, and environmental economics. But development of the actual models has 

required improvement in computer hardware, software, algorithms, improved data, and 

the ability to access information and exchange ideas across long distances.  

 Perhaps the single most important set of results from IAMs has been the concepts and 

estimation of efficient paths of abatement and carbon pricing required for slowing climate 

change. There was essentially no awareness of the importance of carbon pricing two 

decades ago, and few would have hazarded an estimate of the appropriate carbon price. 

Today, in part because of developments in IAMs, carbon prices and estimates of the social 

cost of carbon are actually integrated into the regulatory decisions of major countries. 

 Looking forward, there is clearly much work remaining for modelers. Many of the 

topics discussed in the last section require further refinement and better modeling, 

particularly in issues surrounding uncertainty, technological change, and the need for 

mechanisms to break the non-cooperative trap of climate policy that is gripping the globe. 

There is much fruitful work that remains for future researchers. 
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Table 1. Organizations sponsoring integrated assessment models 

 

 

 

 

 

 

 

 

 

 

Sector Number
Universities 17
Research institutes 12
Government institutes 9
Business or consulting 4
Total 42

Compiled by the author from
http://iamconsortium.org/  as of March 2011.
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Table 2. Growth of Net National Income by region, baseline run, RICE-2010 model 

Net national income equals consumption plus the growth in the net capital stock, including 

climate damages in baseline run. 

 

 

 

 

2005-2055 2055-2105 2105-2205

Growth of net national income      [Percent per year, logarithmic]

US 2.04 1.08 0.29
EU 1.84 0.88 0.28
Japan 1.02 0.71 0.30
Russia 1.73 0.85 0.36
Eurasia 2.65 1.44 0.40
China 3.90 1.25 0.30
India 4.29 1.87 0.37
Middle East 3.59 1.69 0.27
Africa 4.99 2.33 0.30
Latin America 3.16 1.47 0.33
Other high income 1.99 0.79 0.27
Other developing Asia 4.10 2.10 0.37

World 2.79 1.45 0.32
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Table 3. Participation rates in Copenhagen Accord, RICE-2010 model 

Table shows the assumed dates at which different regions join the protocol; the base year 

used to index emissions; the commitment year (the year in which the emissions are 

limited); the fraction of emissions covered for the commitment year; and the indexation 

plan. The “House bill” is the legislation passed by the U.S. House of Representatives in 

2009 (HR 2454). 

 

 

 

Capping region:
Date of 

participation
Base year

Commitment 
year

Fraction of 
base year in 
commitment 

year

Further 
reductions 

tied to

US 2015 2005 2015 0.84 House bill

EU 2005 1990 1995 0.80 US

Japan 2005 1990 1995 0.94 US

Russia 2005 1990 2005 1.00 US

Eurasia 2020 1990 2020 1.00 US

China 2030 2030 2030 1.00 US

India 2040 2040 2040 1.00 US

Middle East 2050 2050 2050 1.00 US

Africa 2070 2070 2070 1.00 US

Latin America 2030 2030 2030 1.00 US

OHI 2015 2015 2015 1.00 US

Other non-OECD Asia 2040 2040 2040 1.00 US
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Table 4. Results for climate variables for different runs, RICE-2010 model 

 

 

  

2000 2100 2200 2300

CO2  concentrations (ppm)

Base 369.5 748.0 1,250.0 1,227.6
Optimal 369.5 591.7 493.2 455.6
Limit T < 2 °C 369.5 453.7 417.4 398.4
Copenhagen: Full Trade 369.5 532.9 506.4 474.2
Copenhagen: No trade 369.5 530.8 483.2 463.6
Copenhagen: Rich only 369.5 676.4 808.9 726.6

Radiative forcings (W/m2)
Base 1.60 5.99 8.50 8.41
Optimal 1.60 4.42 3.41 2.97
Limit T < 2 °C 1.60 2.83 2.49 2.23
Copenhagen: Full Trade 1.60 3.77 3.55 3.19
Copenhagen: No trade 1.60 3.74 3.29 3.06
Copenhagen: Rich only 1.60 5.38 6.12 5.48

Temperature (°C from 1900)
Base 0.83 3.51 5.72 6.56
Optimal 0.83 2.77 2.71 2.41
Limit T < 2 °C 0.83 2.00 1.92 1.82
Copenhagen: Full Trade 0.83 2.49 2.64 2.58
Copenhagen: No trade 0.83 2.48 2.51 2.43
Copenhagen: Rich only 0.83 3.20 4.52 4.37
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Table 5. Carbon prices in the different runs, RICE-2010 model 

The carbon prices are the market prices that are required to attain the policy objectives. 

These assume full trading and participation in all regions that are in the policy regime.  

 

 

 

  

 (2005 prices per ton C)
Carbon prices 2005 2010 2015 2020 2025 2055 2105
Optimal 0.00 28.93 37.70 49.13 64.02 153.45 430.59
Limit T < 2 °C 0.00 58.80 78.79 105.57 141.46 529.64 723.42
Copen: Full trade 0.00 0.10 0.39 1.51 5.79 358.37 593.10
Copen: Rich only 0.00 0.07 0.39 2.21 12.40 64.11 27.68
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Table 6. Carbon price for Copenhagen Accord with no trading, RICE-2010 model 

 

 

 

  

Carbon price (2005 $ per ton 
carbon)

2015 2025 2035 2045 2055 2105

US 34.55 82.64 229.22 397.39 523.12 592.74
EU 0.00 74.04 196.79 476.89 706.78 878.72
Japan 184.87 198.12 352.71 532.04 708.96 836.46
Russia 0.00 0.00 0.00 39.13 141.26 289.42
Eurasia 0.00 0.00 0.00 11.79 114.17 297.16
China 0.00 0.00 69.54 201.85 317.52 417.29
India 0.00 0.00 0.00 213.96 467.48 711.35
Middle East 0.00 0.00 0.00 0.00 168.95 553.48
Africa 0.00 0.00 0.00 0.00 0.00 417.91
Latin America 0.00 0.00 210.00 528.51 757.51 897.81
OHI 0.00 20.82 160.61 361.20 527.40 648.55
Other 0.00 0.00 0.00 269.48 566.65 821.90

Global average 10.13 22.28 80.29 209.41 354.51 570.71
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Table 7. Emissions control rate, Copenhagen Accord with full trading, RICE-2010 model 

 

 

  

Emissions control rates 
(% of baseline) 2005 2015 2025 2035 2045 2055 2065 2075 2085 2095 2105
US 0.0 2.1 9.7 28.7 49.8 64.3 73.3 77.1 82.5 86.6 89.5
EU 0.0 1.6 7.6 22.5 38.9 50.3 57.3 60.3 64.6 67.7 70.0
Japan 0.0 1.6 7.6 22.5 38.9 50.3 57.3 60.3 64.6 67.7 70.0
Russia 0.0 2.6 12.2 36.0 62.3 80.5 91.8 96.5 103.4 108.5 112.1
Eurasia 0.0 0.0 12.2 36.0 62.3 80.5 91.8 96.5 103.4 108.5 112.1
China 0.0 0.0 0.0 33.0 57.2 73.9 84.2 88.6 94.9 99.6 102.9
India 0.0 0.0 0.0 0.0 44.5 57.5 65.5 68.9 73.8 77.5 80.0
Middle East 0.0 0.0 0.0 0.0 0.0 60.6 69.1 72.7 77.8 81.7 84.4
Africa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.9 73.8 77.5 80.0
Latin America 0.0 0.0 0.0 23.4 40.6 52.4 59.7 62.8 67.3 70.6 72.9
OHI 0.0 1.8 8.7 25.7 44.5 57.5 65.5 68.9 73.8 77.5 80.0
Other developing Asia 0.0 0.0 0.0 0.0 42.4 54.8 62.4 65.7 70.3 73.8 76.3
Global 0.0 0.8 3.4 17.7 35.7 53.0 56.2 69.8 73.4 75.7 77.9
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*Annual value of consumption at a annjuitization rate of 5% per year. 

 

Table 8. Present value of global consumption, different policies, RICE-2010 model (scaled to 

consumption in US international dollars, 2005 prices) 

 

The estimates are the present value of global consumption equivalent for the entire period. 

This is equivalent to the present value of utility in consumption units. The difference in 

numerical column 2 shows the difference between the control run and the no-policy or 

baseline run. Incomes of countries are calculated using purchasing-power parity exchange 

rates and are discounted using an international interest rate that is the capital-weighted 

average of the real interest rates for different regions. 

  

 PV Utility             Difference Annualized*

Policy scenario
[Trillions of 

2005 $]
[Trillions of 

2005 $]
Percent of 

base
[Billions of $ 

per year]
Base 2,301.5 0.00 0.00% 0

Optimal 2,309.6 8.07 0.35% 403

Limit T < 2 °C 2,305.9 4.41 0.19% 220

Copen: Full Trade 2,307.8 6.26 0.27% 313

Copen: No trade 2,307.1 5.63 0.24% 281

Copen: Rich only 2,304.1 2.55 0.11% 128
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Table 9. Costs and benefits of Copenhagen Accord through 2055, RICE-2010 model 

 

The table illustrates the regional asymmetry of the Copenhagen Accord. The estimates take 

the present value of abatement costs and averted damages using the capital-weighted 

international real interest rate. The last column is the sum of the first three columns. (OHI, 

other high income. Figures are in billions of 2005 international US $) 

 

 

 

  

   Costs and benefits (billions, discounted through 2055, 2005$)

Region
Change in 
damages

Abatement 
Costs

Permit 
purchases

Net costs

US -51 328 228 505
EU -56 160 171 276
Japan -12 44 64 96

Russia -5 92 -176 -89
Eurasia -4 62 -150 -92
China -52 655 -268 335

India -54 185 -1 130
Middle East -47 123 -134 -57
Africa -41 0 0 -41

Latin America -33 127 154 248

OHI -18 96 48 126
Other -42 188 64 209

World -413 2,060 0 1,647
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Table 10. Illustration of the impact of uncertainty about temperature sensitivity coefficient 

on the optimal carbon price 

This uses a variant of DICE-2010 and the results are slightly different from the RICE-2010 

results shown in other tables. Results are price per ton of carbon in 2005 US international 

prices. 

 

 

 

  

TSC* Optimal carbon price, 2015 (2005 $)

1.0 8.64                             

2.0 22.45                           

3.0 35.34                           

3.2** 37.70                          

4.0 46.41                           

5.0 55.77                           

6.0 63.70                           

* Temperature sensitivity coefficient.

** Baseline assumption.
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Table 11. Estimates of the social cost of carbon from different sources 

 

Estimates from US Working Group are central deflated to 2005 prices. RICE-2010 are from 

Nordhaus (2011a). Tol estimates use all references that contain estimates of the 

consumption discount rate and take unweighted medians of the SCC for the given discount 

rate. The Tol estimates are in 1995 and 1995 prices. They are reflated to 2005 prices using 

the GDP price index, and moved to 2010 using an assumed real rate of increase of the SCC 

equal to the real discount rate. 

 

 

 

  

     Social cost of carbon (2005 US $ per ton C)

Year of 
discounting and 
emission

                   Discount rate on goods

Year              US Working Group 2010            Tol survey median RICE-2010

2.5% 3.0% 5.0% 3.0% 5.0% 5.50%

2010 123                75                 16                 131               42                 35

2020 134                83                 24                 52
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Table 12. Calculated carbon prices in Nash equilibrium, RICE-2010 model 

 

 

  

Carbon price (2005$ per t C) 2005 2015 2025 2035

US 0.00 4.28 6.07 8.17
EU 0.00 5.55 7.75 10.40
Japan 0.00 1.69 2.26 2.81
Russia 0.00 0.10 0.10 0.10
Eurasia 0.00 0.53 0.75 0.98
China 0.00 6.81 9.87 13.77
India 0.00 5.05 7.42 10.55
Middle East 0.00 2.94 4.21 5.77
Africa 0.00 4.17 7.00 10.90
Latin America 0.00 2.85 4.28 6.00
OHI 0.00 2.71 3.63 4.72
Other 0.00 2.44 4.22 6.88

Global (emissions weighted) 0.00 4.17 6.02 8.31
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Table 13. Alternative assumptions for discounting calibration 

 

Estimates of the social cost of carbon and the real return on capital are from the DICE-2010 

model, which differ slightly from RICE-2010 model. For description, see text. 

  

Model assumption
Consumption 

elasticity
Generational 
discount rate

Social cost of 
carbon, 2015 

(2005 $)
Real return on 
capital (2015)

DICE/RICE 1.5                     0.015 55 5.3

Stern Review 1.0                     0.001 1,518 2.6

1.5                     0.001 381 3.9

Recalibrated RICE/DICE 2.0                     0.001                125 5.2

2.5                     0.001 86 6.5

3.0                     0.001 52 7.8
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Table 14. Parameters in standard DICE-2010 runs and extreme values 

 

 

 

  

Parameters Base value Extreme value

TSC 3 10

Convex damage component
Intercept 0 0.1
Exponent 0 6
Tipping point (°C) none 3

Policy begins 2015 2255

Pure time discount rate 0.015 0.001

Notes:
"TSC" is the equilibrium response of global mean temperature to a doublin

of atmospheric CO2 concentrations (°C)
"Convex damage component" is a term added to the DICE damage function

that has "tipping point" at specified temperature increase
"Policy begins" indicates that there are no controls until that date, then

controls are optimized after that date.
"Discount rate" is pure rate of social time preference per year.
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Table 15. Results of alternative extreme values of parameters in DICE model 

. 

  

1 1+3 1+4 1+3+4 1+5 2 2+3 2+4 2+3+4

Variable Optimal
TSC=10 

with policy

High 
damage 

with policy

All 
extreme 

with policy

Base 
parameters 

with low 
discounting 
with policy

Base 
parameters 

with no 
policy

TSC=10 
with no 
policy

High 
damage 
with no 
policy

All 
extreme 
with no 
policy

Social cost of carbon, 2015 (2005$/tC) 42 92 80 350 102 44 105 551 5,100
Per capita consumption (2005 $)

Average, 2000-2200 50,338 48,898 50,373 47,534 50,752 48,872 43,254 26,091 5,966
Minimum 2000-2200 6,801 6,799 6,799 6,796 6,799 6,800 6,800 6,800 179

Consumption annuity per capita (c)
Thousands, 2005 $ 17,765     17,641      17,723      17,441      (b) 17,718       17,422      15,803      634           
Percent decline 0.7% 0.2% 1.8% (b) 0.3% 1.9% 11.0% 96.4%

Obj. funct. (consumption equivalent)
Trillions, 2005 prices 1391.1 1381.3 1387.8 1365.2 (b) 1387.4 1363.7 1218.3 (a)
   Difference from optimal -9.8 -3.3 -25.8 (b) -3.7 -27.3 -172.8 (a)
Percent decline 0.7% 0.2% 1.9% (b) 0.3% 2.0% 12.4% (a)

(a) This value is a large negative number because of non-linear objective function. Refer to consumption annuity.
(b) This value is not comparable to other runs because the discount rate is different from standard cases.
(c) The consumption annuity is the level of constant consumption that yields the same discounted utility as the case under consideration.

Cases:
1: Optimal policy from 2015
2: Hotelling rents on carbon until 2255, then optimal policy

3: TSC = 10oC per CO2 doubling

4: Catastrophic damages at tipping point of 3 oC
5: Social discount rate at 0.1 % per year

Units:
Social cost of carbon in $ per ton carbon, 2005 US $
Per capita consumption in 2005 U.S. international dollars
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Figure 1. Time trend of publications citing “Integrated Assessment Models” from Google 

Scholar and ISI Citations 
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Figure 2. Schematic flow chart of a full integrated assessment model for climate change 

science, economics, and policy 
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Figure 3. Estimates of the Impact of Global Warming on the Global Economy 

This shows a compilation of studies of the aggregate impacts or damages of global 

warming for each level of temperature increase (dots from Tol 2009). The solid line is the 

estimate from the RICE-2010 model. The arrow is from the IPCC (2007a). 
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Figure 4. Global rates of decarbonization 

Figure shows the weighted growth of emissions (x), composition effect (□), and total 

growth in emissions (Δ). Weighted growth takes the chain weighted grow of regions where 

the weights are the share of global total emissions.  

Source: Nordhaus (2010) 
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Figure 5. Projected emissions of CO2 under alternative policies, RICE-2010 model  

Projected emissions of industrial CO2 associated with different policies. Policies are 

explained in text. Note that other GHGs are taken to be exogenous in the projections. 
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Figure 6. Atmospheric concentrations of CO2 under alternative policies, RICE-2010 model 

Pojected atmospheric concentrations of CO2 associated with different policies. The 

concentrations include emissions from land-use changes. Policies are explained in text. 
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Figure 7. Global temperature increase (°C from 1900) under alternative policies, RICE-2010 

model 

Projected global mean temperature paths associated with different policies. 
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Figure 8. Globally averaged carbon prices in different policy runs, RICE-2010 model 

 

Note the sharp decrease in carbon price in the limit case. This occurs as temperature hits 

the ceiling. 
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Figure 9. Total costs of compliance as percent of national income, RICE-2010 model  

The total costs equal the abatement costs plus the net purchases of emissions permits from 

other regions under full participation and full trading. These are then divided by net 

national income for the region. 
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Figure 10. Comparison of temperature projections, baseline runs, alternative vintages of 

RICE/DICE models 

This shows the temperature projections from the first DICE model in 1994 through RICE-

2010. The inset graph shows the calculated temperature for 2105 plotted against the date of 

the model publication. 
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Fig 11. Comparison of CO2 concentrations between RICE-2010 and EMF-22 models 

Source: Clarke et al. (2009) and spreadsheet with results provided by Leon Clarke. 
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 Figure 12. Marginal value of control variable is zero in optimization IAM with zero 

damages 

 

Economic models should be designed like W(u) with no externalities. This implies that 

objective function (say, economic welfare) is maximized at zero level of control variable 

when all market failures are corrected. If an uncorrected externality is added, as in V(u), 

then a change in control variable will increase objective function and economic welfare. 
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Objective 
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