APEC 5152
Utility, Indirect Utility and Expenditure

Consumption

We'll use Cobb-Douglas preferences, \(u = q_1^{\gamma_1} q_2^{\gamma_2} q_3^{\gamma_3} \), where \(\gamma_1 + \gamma_2 + \gamma_3 = 1 \). It turns out that using the Cobb-Douglas function doesn't work with the Solve function. Taking a monotonic transformation of the function - a log transformation - however, yields a solution.

The Indirect Utility Function

The lagrangian

\[
\begin{align*}
U &= \log[q_1^{\gamma_1} q_2^{\gamma_2} q_3^{\gamma_3}] \quad \text{// PowerExpand} \\
L_0 &= U + \lambda \left(wv - p_1 q_1 - p_2 q_2 - p_3 q_3 \right) \\
\end{align*}
\]

The first-order conditions

\[
\begin{align*}
\text{FOC}_1 &= \frac{\partial L_0}{\partial q_1} = \gamma_1 q_1 - p_1 \lambda \\
\text{FOC}_2 &= \frac{\partial L_0}{\partial q_2} = \gamma_2 q_2 - p_2 \lambda \\
\text{FOC}_3 &= \frac{\partial L_0}{\partial q_3} = \gamma_3 q_3 - p_3 \lambda \\
\end{align*}
\]
\textbf{Expenditure Function}

The optimization problem is \(L = p_1 q_1 + p_2 q_2 + p_3 q_3 + \lambda (u - q_1^{\gamma_1} q_2^{\gamma_2} q_3^{\gamma_3}) \)

The solution gives the system of demands
Applying Shepard’s lemma to \(p1 \) gives

\[
\partial_{p1} \text{CC} = \left(\frac{p1}{\gamma1} \right)^{1-\gamma1} \left(\frac{p2}{\gamma2} \right)^{2} \left(\frac{p3}{\gamma3} \right)^{\gamma3}
\]

Since \(-1 + \gamma1 = \gamma2 + \gamma3\), this is the same as \(q1\text{demand} \).
1. Cobb-Douglas production function, cost minimization problem, setup and first-order conditions

Introduce a three-input (k, l, z) Cobb-Douglas production function, and use it to derive a cost function. We do this by solving a cost minimization problem, with the objective function defined by “cst” and setting up the typical lagrangian, and then taking the first-order conditions.

\[y = \psi k^{\alpha_1} l^{\alpha_2} z^{\alpha_3} \]
\[\text{cst} = r k + w l + \tau z \]
\[\text{Lagrangian} = \text{cst} + \lambda (y - y) \]
\[\text{fc} = \frac{\partial}{\partial k} \text{Lagrangian} = \lambda \alpha_1 \]
\[\text{fd} = \frac{\partial}{\partial l} \text{Lagrangian} = \lambda \alpha_2 \]
\[\text{fz} = \frac{\partial}{\partial z} \text{Lagrangian} = \lambda \alpha_3 \]

Now solve the system of equations for optimal levels of all inputs (k, l, z) and for the Lagrangian multiplier, \(\lambda \). This yields the factor demand curves, \(\text{fdk} \), \(\text{fdl} \), \(\text{fdz} \). Using // ExpandAll eliminates the exponential type answers.

\[\text{cf} = \text{Solve}[\{\text{fc} = 0, \text{fd} = 0, \text{fz} = 0, \text{fc4} = 0\}, \{k, l, z, \lambda\}] \]

\[\text{fdk} = \text{cf}[1, 1, 2] \]
\[\text{fdl} = \text{cf}[1, 2] \]
\[\text{fdz} = \text{cf}[1, 3] \]

1.1 Substitute factor demand curves into cost function to derive producer's cost function

Here, we substitute the factor demand curves derived above into the original objective function - the result is the parameterized version of the cost function associated with the Cobb-Douglas production function.
1.2 Apply Shepard’s lemma to the producer’s cost function to derive factor demand curves

\[\psi = \frac{\alpha}{\partial w} + \text{Rent} \]

\[\frac{\partial}{\partial \alpha} \left(\frac{1}{\psi} \right) = \frac{1}{\psi} \frac{\partial \psi}{\partial \alpha} = \frac{1}{\partial \alpha} \]

\[\alpha \]

Now solve for the factor demand curves.
factdem = Solve[{FOCl = 0, FOCl = 0}, {k, l}] // ExpandAll // FullSimplify;
FDk = factdem[[1, 1]]
FDl = factdem[[1, 2]]

k \rightarrow p^{-1} r z \alpha_1 \alpha_2 \psi \alpha_1 \alpha_2
l \rightarrow p^{-1} r z \alpha_1 \alpha_2 \psi \alpha_1 \alpha_2

2.1 Substitute factor demand curves into net revenue function to derive producer's value-added function

vaf = Rent /. factdem[[1]] // PowerExpand // FullSimplify

- p^{-1} r z \alpha_1 \alpha_2 \psi \alpha_1 \alpha_2

2.2 Apply Hotelling's lemma to the value-added function to derive factor demand curves

khotel = -\partial_r vaf
lhotel = -\partial_w vaf

Now test to see if Hotelling's lemma holds for factor demands

khotel - FDk // Simplify
lhotel - FDl // Simplify

0
0

2.3 Apply Hotelling's lemma to derive the supply function for this single-sector model

\partial_p vaf

D[vaf, w] // {\alpha_1 \rightarrow 0.2, \alpha_2 \rightarrow 0.3, \alpha_3 \rightarrow 0.5}
D[%, w] // {\alpha_1 \rightarrow 0.2, \alpha_2 \rightarrow 0.3, \alpha_3 \rightarrow 0.5}
D[vaf, p] // {\alpha_1 \rightarrow 0.2, \alpha_2 \rightarrow 0.3, \alpha_3 \rightarrow 0.5}
D[%, p] // {\alpha_1 \rightarrow 0.2, \alpha_2 \rightarrow 0.3, \alpha_3 \rightarrow 0.5}

0.0765255 p^2 z^1 \psi^2
r^0.4 w^{1.6}
0.122441 p^2 z^1 \psi^2
r^0.4 w^{2.6}
0.255085 p^1 z^1 \psi^2
r^0.4 w^{0.6}
0.255085 z^1 \psi^2
r^0.4 w^{0.6}
\[rK = 26460.4 + 51410.2 + 9930.2 + 151297.3 \]
\[wL = 6902.7 + 44125.4 + 7798.6 + 242620.1 \]
\[\text{Solve}\left[\frac{rK}{K} == 0.1, K\right] \]
\[\text{Solve}\left[\frac{wL}{L} == 3257, L\right] \]
239098.
301447.
\{\{K \to 2.39098 \times 10^6\}\}\]
\{\{L \to 92.5535\}\}\]
\[\frac{rK}{2390981} // N \]
0.1