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ABSTRACT 

 
The loss of hydroelectric reservoir capacity to sediment accumulation is a serious problem in 
much of the world. Hydroelectric plants are typically classified as either “reservoir” or “run-of-
river” (RoR) facilities.  A reservoir facility stores water during the rainy season so as to be able 
to generate more power in the dry season.  The allocation of stored water for dry-season power 
production has been extensively explored using the tools of dynamic optimization. 

There is also a sort of hybrid system:  RoR plants with small reservoirs for daily peaking.  Such 
plants store only enough water to run their turbines for a part of the day, and allocate daily 
flows during the dry season to meet peak daily electricity demand. During the rest of the year, 
they operate as conventional RoR plants.  In this work I consider the optimal allocation of daily 
peaking capacity, deriving a sort of peak-load pricing rule relating the value of power generated 
during peak and off-peak periods.  I also nest the solution to the daily-timestep optimization 
problem into an annual-timestep optimization to characterize expenditures on sediment 
management. This inquiry is motivated by work I have been doing on sediment management at 
the Kali Gandaki A Hydroelectric Plant in Nepal, and I will illustrate findings with some results 
calibrated for that facility. 
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I.   Introduction 
 
Hydroelectric power is important in many parts of the world.  Two variants are common.  
Reservoir plants impound a large volume of water behind dams to compensate for seasonal 
variability in river flow.2 Run-of-river (RoR) plants divert water from a river channel to generate 
electricity. 
 
Allocation of stored water from a reservoir facility has been studied in some detail (Førsund 
2015; Kawashima 2007).  It is treated as a problem in the allocation of an exhaustible resource:  
the water impounded in the reservoir during a dry season during which it is not replenished.  
The general principle of exhaustible resource allocation then applies:  water should be allocated 
so its marginal value is equal at all times.  The marginal value of water used in hydroelectric 
generation is comprised of the product of its marginal contribution to power generation and 
the marginal value of the power generated.  The latter typically varies with the time at which 
power is provided; there is typically a peak demand period, and a continual variation in 
consumer willingness to pay for power at other times.  Consequently the relatively simple rule 
that the marginal value of water discharged should be equal at all times when it is scarce may 
be translated into much more complicated operating rules. 
 
The analysis can be further complicated when a dam operator faces both short- and long-term 
optimization problems.  We have just described the short-term problem:  how to allocate water 
from a fixed supply over the duration of an extended period when replenishment is limited.  
There is also a problem, though, in that many hydroelectric reservoirs are losing capacity over 
time.  Reservoirs fill with sediment so, absent measures to control accumulation, capacity may 
become more and more scarce – and hence, valuable – over time.  It is often possible to check 
sediment accumulation by dredging, siphoning, controlling erosion in the catchment area, or 
with periodic management operations such as reservoir flushing.  This poses another 
optimization problem:  how much cost should be incurred at any point in time so as to control 
sediment accumulation that will affect future operations?  The general principle here is that the 
reduction measures should be pursued until the net present value of the marginal cubic meter 
of reservoir capacity in all future periods just balances the current marginal cost of sediment 
control (see Kawashima 2007) 
 
These problems of large hydroelectric plants with reservoirs that impound water for seasonal 
use have been studied in the literature, and prescriptions offered for their solution. 3  Such 
issues would be obviated for RoR plants, which are, by definition, constrained to operate with 
whatever flow is available at the time.  There is, however, an interesting hybrid:  an RoR plant 

                                                      
2   Impoundment might also be used to create a greater vertical drop (“hydraulic head”) in a more compact space.  
Power generation varies proportionally with head, other things being equal. 
   
3  Similar issues also arise in the analysis of dams that impound water during the winter for irrigation in the 
summer. 
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with “peaking capacity”.  In such a facility a dam impounds a relatively small volume of water; it 
is only enough to supply power for a fraction of a day.  The operator of such a plant faces an 
even shorter-term optimization problem than does operator of a reservoir plant with seasonal 
storage:  what daily schedule of filling and discharging the limited capacity of the reservoir will 
optimize power users’ benefts? 
 
The first step in solving such a problem is to determine the conditions under which the capacity 
constraint binds.  Peaking capacity plants may be built on rivers where flow is sufficient to 
operate at full power most of the year, but not during a dry season when flow is reduced.  
Obviously, when river flow is sufficient to serve the full capacity of the plant to produce power 
the capacity of the reservoir to store water is irrelevant.  When does peaking capacity bind, and 
hence, become valuable, then?  When there is a period of the day during which reservoir is full 
and can store no more water, and another when it is empty, and power production is 
constrained by river flow. 
 
A short-term solution when capacity binds involves satisfaction of different conditions 
depending on whether the reservoir is filling or emptying.  The marginal value of a cubic meter 
discharged should be constant over an interval during which the reservoir is filling (or 
emptying), but it will be lower (respectively, higher) in the former than the latter. 
 
The long-term solution also differs from that of the seasonal reservoir.  The value of an extra 
cubic meter of reservoir capacity maintained by sediment management is not the marginal 
value of the electricity that can be produced with the extra cubic meter of water stored, but 
rather, the difference between peak and off-peak values of the electricity that could be 
generate from the marginal cubic meter.  The fundamental insight is that the amount of 
electricity that can be produced by a peaking plant depends ultimately on the flow of water in 
the river.  Reservoir capacity does not affect this flow.  Rather, it affects when during the course 
of the day the fixed flow of water can be discharged.  The long-term optimization problem is 
solved, then, when the current marginal cost of sediment reduction is equated to the net 
present value of the difference between peak and off-peak power values. 
 
This paper is motivated by three concerns.  First, these issues arise in the management of the 
Kali Gandaki “A” Hydroelectric Plant in Nepal.  There is a practical interest in better 
understanding how its peaking capacity might be best managed in short term and best 
preserved in the long term, and this inquiry proceeds from that interest.4  Second, this topic 
involves an interesting application of dynamic optimization methods, and fills in an as-yet-
unexplored niche in the analysis of hydroelectricity plant operations. 
 

                                                      
4   It should, however, be underscored that the analysis and any opinions expressed here are the author’s, and do 
not necessarily reflect those of the World Bank, which sponsored the work on which this paper is based, the Nepal 
Electricity Authority, nor any other body. 
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Third and most interestingly, the application of this analysis is to a part of the world that has 
historically been underserved, and for which meeting electric power needs has been an 
important challenge in development policy (Timilsina, et al., 2018).  Steps to increase the 
efficiency with which existing reservoir capacity is allocated and to manage the conservation of 
that capacity might contribute to real improvements in people’s lives.  Moreover, those 
improvements might arise both directly, from more timely power provision, but also indirectly, 
through other avenues.  When electricity is not available via central supply, other sources can 
include thermal generation, with implications for both greenhouse gas emissions and local air 
pollutants. 
 
The rest of the paper is presented in four sections.  In the next section we derive conditions for 
when the reservoir capacity constraint binds.  Following that, we solve the short- and long-term 
optimization problems.  The third section following applies the results to the Kali Gandaki “A” 
Hydroelectric Plant, and a final section discusses results and considers how arcane prescriptions 
from dynamic optimization modeling might be reduced to more operational guidance. 
 
 
 
II. When does capacity matter? 
 
This paper is about valuing the preservation of reservoir capacity in a plant with limited daily 
peaking capacity during a dry season of the year.  Reservoir capacity, like any other economic 
good, is only valuable to the extent that it is scarce.  If there is more capacity than is needed to 
operate the plant optimally, the marginal value of capacity is zero.  Stated in this way, this claim 
seems unexceptionable, and it is.  However, it is easy to confuse two different things.  Water 
that is held in the reservoir during periods of low demand for discharge during a later period of 
high demand is valuable.  But its scarcity arises because the flow of water in the river is itself 
scarce during the dry season.  The fact that water than can be used later is valuable does not 
necessarily mean that having extra capacity to store that water would itself be valuable. 
 
This might be demonstrated formally as follows.  Let 𝑣(𝑥𝜃, 𝜃) be the consumer surplus derived 
from electricity generated when water is discharged at rate 𝑥𝜃 at time 𝜃.  The index 𝜃 should be 
thought of as clock time, rather than a date.  The types of facilities we are interested in are run 
on 24-hour cycles to meet daily peak demand, so assume that the dam operator’s objective is 
to 
 

max
{𝑥𝜃}

∫ 𝑣(𝑥𝜃, 𝜃)𝑑𝜃

24

0

.    (1) 
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This objective is to be maximized over repeating 24-hour daily cycles.  If 𝑆𝜃 is the amount of 
water stored in the reservoir at time 𝜃 and we can assume the flow of water in the river is 
approximately constant at rate 𝑓 at any time of day,5 then  
 

�̇� = 𝑓 − 𝑥𝜃.       (2) 
 
A dot over a variable indicates its total derivative with respect to time.  Expression (2) just says 
the change in reservoir volume at any point in time is the difference between inflow and 
discharge at that time. 
 
There is, of course, also a limit as to how much can be stored in the reservoir.  It cannot be 
drained below some zero point, nor filled in excess of its capacity, which I will denote as 𝐾,  
 

0 ≤ 𝑆 ≤ 𝐾        (3) 
 
The limits in (3) then imply that 
 

𝑥𝜃 = 𝑓  if 𝑆𝜃 = 0   or  𝑆𝜃 = 𝐾;       (4) 
 
if the reservoir were completely full, or if it were completely empty over any interval of time, 
the discharge rate would have to be the same as the inflow rate over that interval. 
 
Finally, as the plant is operated on a 24-hour cycle, suppose that 𝑆0 = 𝑆24:  at the end of a 24 
hour period there must be as much water in the reservoir as there was at the beginning, so the 

cycle can be repeated again.6   
 
Consider now the solution to the problem just described.  It is instructive first to consider the 
case in which the constraints in (4) do not bind, and hence that the operator’s choice of 
discharge rate is never constrained to equal river flow.  Put another way, the reservoir is never 
completely filled or completely emptied.  To solve this problem, introduce a costate variable, 𝜆, 
to append (2) to the integrand of (1) (in the language of optimal control theory, forming the 
Hamiltonian).  A solution must satisfy  
 

𝜕𝑣

𝜕𝑥
= 𝜆       (5) 

 
and 

                                                      
5   Precipitation during a day might affect flow, but such variations may not be large and, of course, the “dry 
season” is characterized by a general dearth of rain. 
6   We could also suppose the beginning and end times of the cycle are choice variables under the operator’s 
control.  This would introduce additional boundary conditions that would add to the complexity of the analysis, but 
repeat elements already explicated in the discussion of “switch points” below.  Inasmuch as it seems both 
intuitively and empirically obvious that the plant would and should be operated on a 24-hour cycle to meet daily 
variation in demand, these endpoints will be considered fixed. 
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�̇� = 0        (6) 
 
Heuristically, the economic interpretation of the costate variable, 𝜆, is as the implied price of 
the state variable, which is, in this case, the volume of water held in the reservoir, 𝑆.  Equation 
(6) says that the value of another liter of water in the reservoir is just the marginal value of the 
power that could be generated by releasing that liter.  Equation (7) says that, because the liter 
of water could be released at any time of day, the marginal value should be the same during 
every minute of the day.  If it were not, the operator should allocate more discharges when 
they’re more valuable and fewer when they’re less valuable. 
 
Denote by 𝑉(𝐾) the value of the objective function, (1), when the optimal sequence of 
discharges, {𝑥𝜃}, is chosen. We are interested in the marginal value of capacity, 𝐾; by how 
much does the value of the objective, 𝑉(𝐾), increase with an incremental increase in 𝐾?  
Differentiating 𝑉(𝐾) we find: 
 

𝑑𝑉

𝑑𝐾
= ∫

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

24

0

= 𝜆
𝑑

𝑑𝐾
∫ 𝑥𝑑𝜃

24

0

= 𝜆
𝑑

𝑑𝐾
(24𝑓) = 0    (7) 

 
The second equality comes from the maximization conditions that 𝜕𝑣 𝜕𝑥⁄ = 𝜆 and 𝜆 is 
constant; the third equality comes about because over a 24-hour repeating cycle the total 
amount of water discharged must equal the total flow available; and the final equality results 
because river flow is independent of reservoir capacity.   
 
While expression (7) is, in a sense, trivial, it is worth underscoring that the mathematical 
argument substantiates the fundamental economic proposition.  The value of an asset depends 
on how scarce it is.  If the reservoir were never fully filled and drained in a 24-hour cycle – that 
is, if, as assumed in deriving (7), the constraints in (3) and their implication in (4) never arose – 
then there would be no economic loss associated with lost capacity.   
 
Note that expression (7) does not say that discharges never vary over the daily cycle, nor does it 
say that there is no value in having the ability to store water at some points so as to be able to 
discharge more at another.  If demand varies over the course of the day, discharges would 
certainly vary so as to better serve demand.  Expression (7) says, rather, that if discharges do 
not vary by enough to invoke capacity constraints, then capacity (again, as distinguished from 
the ability to vary discharges) will have no marginal value. 
 
The distinction between the value of additional river flow and that of reservoir capacity might 
be underscored by paralleling equation (7), but this time differentiating with respect to the 
river flow rate, 𝑓 rather than reservoir capacity, 𝐾: 
 

𝑑𝑉

𝑑𝑓
= ∫

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝑓
𝑑𝜃

24

0

= 𝜆
𝑑

𝑑𝑓
∫ 𝑥𝑑𝜃

24

0

= 𝜆
𝑑

𝑑𝑓
(24𝑓) = 24𝜆    (8) 
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By the usual interpretation of the costate variable as the shadow price of the state variable, 𝜆 is 
the amount by which the objective would be increased with a marginal increase in water 
stored.  Over the course of a day during which the reservoir starts empty, is filled, and then is 
emptied again, total discharges must equal total inflows.  So the value of water in storage is just 
one hour’s worth of the value if flow could be increased in every hour (as the units of flow are 
measured as volume per hour).  Again, the point to be made here is that water is valuable on 
the margin when flow is low even if the capacity to store it may not be scarce. 
 
This begs the question of the conditions under which the capacity constraint binds.  Suppose 
that there is a maximum flow a plant can safely handle.  At the Kali Gandaki “A” Plant used as 
an example in this paper, the maximum flow of water the each generating turbine is designed 
to handle is 47 cubic meters per second, so the overall limit for all three of its turbines 
operating simultaneously would be 141 meters m3 ∙ s-1.  Designate the maximum rate of 
discharge at which power can be generated as 𝑥.  When the rate of flow in the river, 𝑓, exceeds 
𝑥 there is obviously no need for storage capacity.  When flow is less than 𝑥 the need for storage 
capacity depends on the difference between actual flow, 𝑓, and the maximum that can be used,  
𝑥. 
 
This can be illustrated by considering an extreme example.  Recall from expression (7) above 
that the marginal value of capacity would be zero if the reservoir were never fully filled and 
emptied within the same 24-hour operating cycle.  It may be instructive to ask, then, under 
what conditions of actual and maximum flow it would be physically possible to fully fill and 
drain the reservoir in the same 24-hour cycle.  It cannot be economically optimal to do what is 
physically impossible.7 
 
Recall that 𝐾 is the capacity of the reservoir.  Let us introduce one additional quantity:  define 
𝑥0 as the minimum allowable flow.  At the Kali Gandaki Plant a minimum flow of 4 m3 ∙ s-1 
should be maintained to sustain aquatic life in the river.  If we take as given that a plant 
operates on a 24-hour peaking cycle, a necessary (it is not generally sufficient) condition for 
reservoir capacity to bind would be that 
 

𝐾 (𝑓 − 𝑥0)⁄ + 𝐾 (𝑥 − 𝑓) =⁄
𝐾(𝑥 − 𝑥0)

(𝑓 − 𝑥0)(𝑥 − 𝑓)
≤ 24.      (9) 

 
The quickest possible option for filling the reservoir is to let water accumulate at the rate of 𝑓 −
𝑥0, releasing only the minimum amount required, 𝑥0, while the reservoir is filling.  This would 
take 𝐾 (𝑓 − 𝑥0)⁄  hours to accomplish.  Then, when it is full, the quickest way to empty the 

                                                      
7   We might note in passing that if the marginal willingness to pay for power is determined by factors exogenous 
to the operation of the plant, such as the cost of supply from alternative sources, a so-called “bang-bang” 
operating rule could be optimal.  The reservoir should first be filled as rapidly as possible, then emptied as rapidly 
as possible, as we describe here. 
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reservoir would be to discharge water at rate 𝑥.  As more water is flowing in all the time, 
though, the net rate of discharge would be 𝑥 − 𝑓.  It would, then, take 𝐾 (𝑥 − 𝑓)⁄  hours to 
empty at this rate.  Note that discharging at a gross rate faster than 𝑥 is ruled out on the 
argument that there would be no point in discharging water that could later be used for 
generation. 
 
The shortest possible duration for an empty-to-full-to-empty cycle results when the 
denominator of the middle expression in (9), (𝑓 − 𝑥0)(𝑥 − 𝑓) is maximized. Differentiating this 
expression and setting the result to zero to find a maximum,  
 

(𝑥 − 𝑓) − (𝑓 − 𝑥0) = 0 ⟹ 𝑓 = (𝑥 + 𝑥0) 2⁄     (10) 
 
Substituting from (10) into (9), if reservoir capacity comprises a binding constraint, we would 
need to have 
 

𝐾 ≤ 6(𝑥 − 𝑥0)   (11) 
 
To see how this might play out in the case of the Kali Gandaki Plant, its maximum designed flow 
is 141 m3 ∙ s-1, or 507,600 m3 ∙ h-1.  Minimum environmental flow is 4 m3 ∙ s-1, or 14,400 m3 ∙ s-1.  
So 
 

𝐾 ≤ 6 ∙ (507,600 − 14,400) = 2,959,200 m3.   (12) 
 
Reservoir capacity would have to be less than about 3 million cubic meters to be binding under 
any circumstances.  The rate of flow that minimizes the refill cycle length is about 72.5 m3 ∙ s-1.  
The minimum average flow in the Kali Gandaki River at the dam site is about 55 m3 ∙ s-1.  At this 
flow, capacity would have to be less than about 2.77 million cubic meters to be binding.   
 
It may be worth underscoring again the distinction between the value of having more water to 
generate electricity as opposed to having more capacity to store water.  Intuitively, when water 
flow in the river is at its lowest, having more water would be most valuable.  But by the same 
token, when water flow in the river is at its lowest, having more capacity to store water might 
not help, if the flow were arriving too slowly to fill the added capacity.  It is also worth 
underscoring one important assumption underlying this analysis:  that the plant is operated on 
a 24 hour peaking cycle.  More capacity might be used if water were to be stored for use, say, 
only every second or third day.  For present purposes, though, we assume that the plant is 
operated on a daily cycle:  being able to provide more peak power on even-numbered days 
would not adequately compensate for providing less on odd-numbered ones. 
 
It is not clear whether and when the capacity constraint binds at the Kali Gandaki Plant.  While 
bathymetric measurements8 give some idea of the volume of the reservoir, and concerns have 

                                                      
8   Bathymetric measurement refers to mapping the bottom of the reservoir to determine its depth at various 
points. 
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arisen that its capacity is being reduced by sediment accumulation, current estimates of the 
reservoir’s capacity are approximations.  Its original design capacity of about 3.7 million m3 has 
clearly been reduced, but it is not clear by how much.  Correspondence with experts indicate 
that the plant may have been designed with excess capacity so as to allow some period of 
operation before its depletion became a concern. 
 
 
III. Optimal operating rules in the short and long runs 
 
In this section we return to the optimization set out in expressions (1) – (4), assuming this time 
that the capacity constraint does bind.  This allows a characterization of the optimal daily 
operating rule during times when river flow is low and the plant is used for daily peaking.  There 
is also a longer-term problem to be considered.  Over a period of time as short as a single 
season reservoir capacity may be regarded as fixed.  Over a time span of multiple years, 
however, an operator may be able to take actions that will affect capacity.  We also consider 
this long-term optimization problem.  As the solution to the short-term problem is required to 
solve the long-term problem, the former is considered first. 
 
 
IIIA. Daily optimization 
 
Return to the constrained optimization problem defined by (1) – (4) but suppose now that 
each constraint in (3) binds at some point in the day.  That is, at some point the reservoir is 
empty, and at some other point, it is full.  Over any interval during which the reservoir is either 
full or empty the rate of discharge is necessarily constrained to be equal to the rate of flow in 
the river, 𝑓. 
 
Suppose for simplicity, but not unrealistically, that daily demand is a single-peaked function.  
Assume, then, that the operator follows a pattern such as the following: 
 

 Starting at time 0, when the reservoir is empty, until some later time 𝜃1, when it is full, 
she discharges less water than flows in:  𝑥𝜃 < 𝑓 for 0 ≤ 𝜃 <  𝜃1. 

 

 Between 𝜃1 and some later time, 𝜃2, the reservoir is maintained at full capacity.  
Whenever the reservoir is full, discharge must equal flow in the river:  𝑥𝜃 = 𝑓 for 𝜃1 ≤
𝜃 <  𝜃2. 

 

 Between 𝜃2 and 𝜃3 the operator discharges more water than flows in, meeting peak 
demand, and emptying the reservoir:  𝑥𝜃 > 𝑓 for 𝜃2 ≤ 𝜃 <  𝜃3. 
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 Between 𝜃3 and 24 hours, the operator is again constrained to discharge as much water 
as flows in, as she cannot maintain less than zero volume in the reservoir:  𝑥𝜃 = 𝑓 for 
𝜃3 ≤ 𝜃 <  24. 

 

 At time 24 the cycle begins again, with discharges held to less than flow to begin to refill 
the reservoir.9 

 
These assumptions lead to a multipart elaboration of the objective, (1): 
 

𝑉(𝐾) = max
{𝑥𝜃}

[∫ 𝑣(𝑥𝜃 , 𝜃)𝑑𝜃

𝜃1

0

+ ∫ 𝑣(𝑓, 𝜃)𝑑𝜃

𝜃2

𝜃1

+ ∫ 𝑣(𝑥𝜃, 𝜃)𝑑𝜃

𝜃3

𝜃2

+ ∫ 𝑣(𝑓, 𝜃)𝑑𝜃

24

𝜃3

]   (13) 

 
Now note that the intervals [0, 𝜃1) and [𝜃2, 𝜃3) are “free” in the sense that the operator can 
choose 𝑥’s on these intervals without being constrained by the capacity of the reservoir.  This 
means that expressions (4) and (5) above hold on these intervals, but, importantly, for different 
values of the costate variable 𝜆 on the different intervals. So  
 

𝜕𝑣

𝜕𝑥
= 𝜆1   (14) 

And 
 

�̇�1 = 0    (15) 
 
on the interval [0, 𝜃1), while 
 

𝜕𝑣

𝜕𝑥
= 𝜆3    (16) 

and 
 

�̇�3 = 0     (17) 
 
on the interval [𝜃2, 𝜃3).10 
 

                                                      
9   We are abstracting from one concern that could be important.  The amount of power that can be generated by a 
cubic meter of water varies linearly with hydraulic head:  the vertical distance between the surface of the reservoir 
and the turbines below.  There is, then, the possibility that what I have described as the fourth part of cycle might 
be dispensed with, in order to more rapidly build up head so that more power can be generate more quickly.  As 
variation in head tends to be relatively small – on other order of 5 meters in roughly 110 – we abstract from this 
consideration for now, but will bring it up again later. 
 
10  One might imagine situations in which the operator would want to discharge massive amounts of water in order 
to produce a pulse of power to meet a brief, high, demand peak.  In practice, such possibilities may be constrained 
by an upper limit on generation imposed by the capacity of the equipment. 
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Note that equations (14) – (17) describe a sort of “complementary slackness” condition; when 
the operator is free to choose the flow rate, 𝑥𝜃, the corresponding marginal value of capacity, 
𝜆𝜃 remains constant.  Heuristically, the operator should allocate flow so that there are no 
“arbitrage opportunities” to increase overall value on the time interval over which choice is 
unconstrained.  Conversely, constraints on flow would arise when the marginal value of 
capacity is rising (or falling) and it is impossible to generate any more (or less) power, given the 
limits of reservoir capacity. 
 
As in the case in which the reservoir capacity constraint did not bind, we find the marginal value 
of capacity by differentiating (13) with respect to 𝐾.  Doing so,  
 

𝑑𝑉

𝑑𝐾
= ∫

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃1

0

+ ∫
𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃3

𝜃2

+ [𝑣(𝑥1, 𝜃1) −  𝑣(𝑓, 𝜃1)]
𝑑𝜃1

𝑑𝐾
+ [𝑣(𝑓, 𝜃2) − 𝑣(𝑥2, 𝜃2)]

𝑑𝜃2

𝑑𝐾

+ [𝑣(𝑥3, 𝜃3) −  𝑣(𝑓, 𝜃3)]
𝑑𝜃3

𝑑𝐾
                                               (18) 

 
Note that we are condensing notation, avoiding subscripting subscripts by writing 𝑥𝑖  for 𝑥𝜃𝑖

. 

 
Consider the two integrals on the right-hand side of the equal sign in (18) first.  The choice of 𝑥 
is only free when the reservoir is neither full nor empty.  From (14) – (17), optimization over 
intervals in which the choice of discharge is not constrained implies that the marginal value of 
discharges is constant over such intervals.  So 

 

∫
𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃1

0

= 𝜆1 ∫
𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃1

0

= 𝜆1

𝑑

𝑑𝐾
∫ 𝑥𝜃𝑑𝜃

𝜃1

0

   (19) 

 
Time 𝜃1 is defined implicitly as the duration required to fill the reservoir, starting from time 
zero.  So, by definition, 

 

∫ (𝑓 − 𝑥𝜃)𝑑𝜃

𝜃1

0

= 𝐾     (20) 

 
Differentiating (20) with respect to 𝐾, and rearranging 

 

(𝑓 − 𝑥1)
𝑑𝜃1

𝑑𝐾
− 1 = ∫

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃1

0

   (21) 

 
Using (21) in (19), 
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∫
𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃1

0

= 𝜆1 [(𝑓 − 𝑥1)
𝑑𝜃1

𝑑𝐾
− 1]   (22) 

 
A similar set of machinations, invoking the implicit definition of 𝜃2 and 𝜃3 by 

 

∫ (𝑥𝜃 − 𝑓)𝑑𝜃

𝜃3

𝜃2

= 𝐾   (23) 

 
gives  

 

∫
𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝐾
𝑑𝜃

𝜃3

𝜃2

= 𝜆3 [1 + (𝑓 − 𝑥3)
𝑑𝜃3

𝑑𝐾
− (𝑓 − 𝑥2)

𝑑𝜃2

𝑑𝐾
]   (24) 

 
Using (22) and (24) in (18) 
 

𝑑𝑉

𝑑𝐾
= 𝜆3 − 𝜆1 

+[𝑣(𝑥1, 𝜃1) + 𝜆1 ∙ (𝑓 − 𝑥1) −  𝑣(𝑓, 𝜃1)]
𝑑𝜃1

𝑑𝐾
   

 

+[𝑣(𝑓, 𝜃2) − 𝑣(𝑥2, 𝜃2) − 𝜆3 ∙ (𝑓 − 𝑥2)]
𝑑𝜃2

𝑑𝐾
 

 

+[𝑣(𝑥3, 𝜃3) + 𝜆3 ∙ (𝑓 − 𝑥3) −  𝑣(𝑓, 𝜃3)]
𝑑𝜃3

𝑑𝐾
                                        (25) 

 
Expression (25) can be greatly condensed, as each of the quantities in square brackets must be 
zero.  The reason for this conclusion can be found in texts on dynamic optimization (see, e. g., 
Kamien and Schwartz 1982), but the heuristic argument is straightforward.  Each of the terms in 
square brackets compares the instantaneous value of discharging a cubic meter of water 
immediately before and immediately after the capacity constraint starts to bind.  Consider, for 
example, the quantity in the first set of square brackets.  Its first term, 𝑣(𝑥1, 𝜃1), is the 
instantaneous contribution to the operator’s objective at time 𝜃1.  The second term, 𝜆1 ∙
(𝑓 − 𝑥1), is the implicit value of the additional water stored in the reservoir at the last moment 
before it reaches full capacity.  Balanced against the sum of these two terms is the third, 
𝑣(𝑓, 𝜃1), the value realized at time 𝜃1 when discharges are constrained to the flow rate, 𝑓, by 
having reached full capacity (note that we could also add 𝜆1 ∙ (𝑓 − 𝑓), to make the difference 
we are considering symmetric, but of course, net additions must be zero when the reservoir is 
full).  Since the operator has the ability to choose a strategy yielding a different “switch time,” 
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𝜃1, if she has chosen that switch time optimally, a small variation in it should not yield a higher 
overall value.11   
 
Thus we have 
 

𝑑𝑉

𝑑𝐾
= 𝜆3 − 𝜆1.   (26) 

 
While the mathematics underlying the derivation of (26) may have been tedious, the intuition 
underlying the result is straightforward.  If reservoir capacity constrains the operator’s choices, 
it is not because it forces her to produce less power over the course of a day than she would 
have liked to.  Her ability to generate power is constrained, but the source of the constraint is 
the flow of the river, not the capacity of the reservoir.  What the capacity of the reservoir 
constrains is the operator’s choice of when she can produce the power the river’s flow rate 
allows.  A marginal cubic meter of storage means that the operator can produce the 
corresponding amount of additional power when its value is high (𝜆3), but by choosing to 
produce more power when it is most valuable, she necessarily forgoes the option of using that 
cubic meter of water to produce the same amount of power when its value is lower (𝜆1). 
 
We might note finally that other constraints might come into play in the actual determination 
of optimal discharges.  It may be, for example, that the plant would optimally be operated at 
full power to meet peak demand (see also footnote 3 above).  For present purposes, however, 
we will simply note that expression (26) establishes our main point:  the marginal value of 
capacity is the difference between consumers’ willingness to pay for power between peak and 
off-peak periods. 
 
 
IIIB. Annual optimization 
 
Expression (26) shows that the marginal value of capacity during the dry season is given by the 
difference between the marginal value of power during peak and off-peak periods.  In deriving 
(26) we have assumed that reservoir capacity is fixed over periods as short as days or seasons.  
In deriving conditions to characterize the optimal allocation of reservoir capacity over the 
course of a day, 𝑉(𝐾) has been defined as the value of the planner’s (daily) objective function 
when she is constrained by reservoir capacity 𝐾.   
 
Over longer periods – years – reservoir capacity varies as sediment accumulates and measures 
are taken to control that accumulation.  Recognizing this, we now ask how those sediment 
control measures might be conducted so as to maximize the net present value of the plant.  
Using the results derived for daily management of the reservoir, consider next optimal 

                                                      
11   Note also that the terms in square brackets in (25) also provide formulae that could be used in conjunction with 
(14) – (17), (18), and (20) to calculate the optimal allocation of discharges.   
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management over longer time horizons.  In the analysis above the volume of water, 𝑆, held in 
the reservoir was defined as the state variable, and we asked how discharges, 𝑥, should be 
scheduled so as to maximize value over the course of a day.  Over a longer time horizon 
suppose that the capacity of the reservoir, 𝐾, is a state variable whose magnitude can be 
affected by controlling the deposition of sediment, which will now be denoted by 𝜎.  We will 
now subscript these variables with an index 𝑡 to denote the passage of time in years:  𝐾𝑡 and 𝜎𝑡.   
 
Define 
 

𝑊(𝐾𝑡) =  𝐷𝑡 ∙ 𝑉(𝐾𝑡) − 𝑐(𝜎𝑡) + (1 − 𝛿)𝑊(𝐾𝑡 − 𝜎𝑡),    (27) 
 
where 𝑊(𝐾𝑡) is the net present value the operator’s objective starting at time t,  𝑐(𝜎𝑡) is the 
cost of restricting sediment deposition at time t to be no greater than 𝜎𝑡, and 𝛿 is the discount 
rate.  The other as-yet undefined variable, 𝐷𝑡, is the number of days in a year that river flow is 
low enough that capacity, 𝐾𝑡, constrains operations. More generally, one might suppose that 
flow in the river which, recall, we have assumed to be constant within a day varies between 
days over the course of a season.  In the interest of brevity, however, suppose for now that 𝐷𝑡 
is fixed.  So, expression (27) is just a standard intertemporal valuation formulation:  the net 
present value of operations with capacity 𝐾𝑡 at time 𝑡 is the value of operation over the 𝐷𝑡 
days of the dry season, less the cost of sediment control, plus the next present value of future 
operations commencing one year in the future.  The value of all plant operations would also 
include the value of power generated when reservoir capacity does not constrain operations, 
but as such values would, by construction, not depend on reservoir capacity, we ignore them 
here. 
 
The operator decides how much sediment deposition to allow in year t, 𝜎𝑡.  The optimal choice 
will be characterized by  
 

−𝑐′(𝜎𝑡) − (1 − 𝛿)𝑊′(𝐾𝑡 − 𝜎𝑡) = 0;      (28) 
 
Differentiating both sides of (27) with respect to 𝐾𝑡, 
 

𝑊′(𝐾𝑡) =  𝐷𝑡 ∙ 𝑉′(𝐾𝑡) + (1 − 𝛿)𝑊′(𝐾𝑡 − 𝜎𝑡)   (29) 
 
or 
 

𝛿𝑊′(𝐾𝑡 − 𝜎𝑡) − [𝑊′(𝐾𝑡 − 𝜎𝑡) − 𝑊′(𝐾𝑡)] =  𝐷𝑡 ∙ 𝑉′(𝐾𝑡)    (30)  
 
Finding a general solution to (30) is difficult.  A couple of extreme cases are illustrative, though.  
First, suppose the right-hand side of (30) were zero.  This would be the case if reservoir capacity 
did not yet constrain daily operations during the dry season.12  Then  

                                                      
12   Plants may be constructed with larger reservoirs than are initially required, on the assumption that the 
accumulation of sediment will reduce capacity over time. 
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𝛿 =
𝑊′(𝐾𝑡 − 𝜎𝑡) − 𝑊′(𝐾𝑡)

𝑊′(𝐾𝑡 − 𝜎𝑡)
;      (31) 

 
The proportionate rate of change in net present value should grow at the discount rate.  
Though accumulation of sediment might not yet constrain dry-season operations, it hastens the 
date at which such a constraint will bind, and hence, imposes a cost. 
 
Expression (31) might hold for a recently built facility that had not yet experienced much 
sediment deposition.  At the other extreme, if it were possible to operate a facility in a steady 
state in which the value is maintained over time and the net rate of sediment deposition were 
zero, we would have 
 

𝛿𝑊′(𝐾) =  𝐷𝑡 ∙ 𝑉′(𝐾),   (32) 

 
Or, substituting from (28) 
 

−𝑐′(0) =
1 − 𝛿

𝛿
𝐷𝑡 ∙ 𝑉′(𝐾)     (33) 

 
The bar over 𝐾 designates a steady-date value, and by making the argument of the marginal 
cost function zero we are supposing that net sediment deposition is zero. 
 
Finally, using the short-term results derived earlier, 
 
 

−𝑐′(0) =
1 − 𝛿

𝛿
𝐷𝑡 ∙ (𝜆3 − 𝜆1)     (34) 

 
The expression on the left-hand side of (34) is the current, single-period marginal cost of 
controlling the marginal cubic meter of sediment deposition when reservoir volume is held 
constant and no net accumulation occurs.  The expression on the right-hand side of (34) is the 
net present value over all future periods of an extra cubic meter of reservoir storage space.13  As 
noted in the introduction, the problem of allocating peaking capacity on a daily cycle differs in 
some important ways from that of allocating fixed reservoir capacity on a seasonal basis.  
However, the result that current marginal costs should be balanced against the net present 
value of all future marginal benefits is common to the literature on reservoir capacity 
management more generally (see, e. g., Kawashima 2007). 
 

                                                      
13   Slightly more formally, noting the factor 1 − 𝛿, the expression on the right-hand side of (29) is the net present 
value starting one period in the future of the marginal cubic meter of reservoir capacity.  This is an artefact of the 
specification of discounting in this model. 
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IV. Calibrating results 
 
Expression (34) relates the marginal benefit of sediment reduction, on the right-hand side, to 
the marginal cost, on the left.  To see how this balance might be struck in practice, consider 
again the example of the Kali Gandaki “A” Hydroelectric plant in Nepal.   
 
The three turbines at the Kali Gandaki Plant are intended to operate at a maximum water flow 
of 141 cubic meters per second (m3 ∙ s-1).  Water flow in the Kali Gandaki can vary from as little 
as 55 m3 ∙ s-1 in the dry season of winter and early spring to more than 1,000 m3 ∙ s-1 during and 
after the annual Monsoon, when flows are also enhanced by snow and glacial melting at higher 
elevations.  In the dry season, then, water flow in the river is insufficient to support peak power 
generation.   
 
The right-hand side of equation (34) depends on the discount rate, the number of days that 
capacity constrains operations, and the difference in values between peak and off-peak power 
consumption.  Let us suppose the discount rate is 8%, so (1 − 𝛿) 𝛿⁄ = 11.5. From the annual 
water flow statistics, flow is insufficient to allow full power generation for about six months of 
the year, so suppose that 𝐷𝑡, the number of days for which the capacity constraint binds, is 180.   
 
It has often been difficult to assign a reasonable value to the marginal willingness to pay for 
power in Nepal, a country in which supply has often been insufficient to meet the demand at 
the prices the Nepal Electricity Authority charges in peak periods.  Recently, however, an 
increase in power imports and purchases from independent producers has greatly increased 
supply (NEA 2018).  Moreover, construction of a new hydroelectric facility with more than three 
times the Kali Gandaki “A” Plant’s capacity, the Upper Tamakoshi Plant, will expand the 
country’s domestic production capability by about two-thirds.  
 
It seems reasonable to suppose, then, that the gap between consumers’ willingness to pay for 
peak and off-peak power values will narrow, as more sources become available to supply peak 
power.  For the purposes of illustration, suppose that the official tariffs, which historically have 
not measured willingness to pay (hereinafter MWP) for peak power generation, will measure 
MWP going forward.  Suppose, then, that the value of off-peak power – the price earlier 
designated as 𝜆1 – is NR 6 per kWh, and peak power – 𝜆3 – is NR 12 per kWh. 
 
Finally, we must translate from the value of the additional power that can be produced at the 
peak to the value of the marginal cubic meter of reservoir storage that will enable its 
production.  Each generating turbine at the Kali Gandaki plant has a rated capacity of 48 MW at 
a flow rate of 47 m3 ∙ s-1.  An additional cubic meter of water storage could, then, run a turbine 
for 1/47th of a second.  Since the turbine could produce 48 MWh of electricity in an hour, which 
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is 3600 seconds, the marginal cubic meter of capacity would enable generation of 48 MWh/(60 
∙ 60 ∙ 47) = 0.284 kWh of additional peak-load power.   
 
So, filling in these values for the variables on the right-hand side of (34), we have 
 

11.5 ∙ 180 ∙ (12 − 6) ∙ 0.284 = 3,525   (35) 
 
This figure of about Nepali Rupees 3,500 per cubic meter of sediment deposited is the steady-
state value of marginal cubic meter of sediment occupying live storage capacity in the Kali 
Gandaki “A” Plant’s reservoir 
 
The reservoir at the plant was designed with a storage capacity of some 7.7 million m3, 
although nearly all of the 4 million m3 of dead storage was filled almost immediately with 
sediment (Morris 2014). The plant receives a tremendous volume of silt, sand, and larger 
particles from glacial runoff, the stream bed, land erosion, and other sources such as landslides.  
It is estimated that the annual flow of sediment, about 43 million tonnes per year, could 
completely fill the reservoir in a single rainy season (sediment transport varies nonlinearly with 
water flow, and is negligible when flows are low).  Less than one-tenth of one percent of this 
flow is trapped in the reservoir, however (IHA 2014).  The remainder passes on.  The great 
majority of it is simply transported around the hydroelectric generating equipment during the 
months when water flow is high and most water is diverted around the intakes.  About 15 
percent of the sediment enters the intakes, where most is trapped in settling basins, and the 
remainder – around four percent of the annual load – passes through the generating turbines, 
where it can do considerable damage, reducing operating efficiency, raising the prospect of 
unanticipated outages, and necessitating costly repairs. 
 
A variety of practices may be adopted to prevent sediment from settling in the reservoir or 
dislodging that which has accumulated.  Sediment-laden water may be sluiced or flushed.  
Sluicing is simply diverting it around the hydroelectric intakes, as described above.  Flushing is 
periodically opening all gates and emptying the reservoir, a measure that might, if undertaken 
for long enough, scour the basin down to the approximate contours of the river’s original 
channel.  Some such operations might be costless.  When water flow is extremely high it is 
dangerous to operate the generating equipment due to the high concentration of sediment.14  
Suspending generation could, then, have the beneficial side-effect of also scouring and 
removing more sediment. 
 
Experts have also suggested that the plant be maintained at a lower level when flows are high 
and, hence, sediment-laden (Morris 2014).  The maximum operating height of the Kali Gandaki 
reservoir is 524 meters above mean sea level; the minimum, 518.  The lower is the level, other 

                                                      
14  Not only the amount of sediment, but also the composition of materials mobilized, differ with higher flow rates.  
Greater flows can mobilize heavier sediment, and larger sand, as opposed to finer silt, particles cause more 
damage. 
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things being equal, the shorter the residence time of water in the reservoir and, consequently, 
the less time for sediment to settle.   
 
There is, however, a cost to maintaining a lower operating height.  The amount of power a 
hydroelectric plant produces from a cubic meter of water depends linearly on the height from 
which it falls – what is referred to as its “hydraulic head”.  The design head for the Kali Gandaki 
plant is about 110 meters, meaning that every meter by which the reservoir height is lowered 
reduces power generation by a little less than one percent.  If we suppose that an element – it 
need not be entirely sufficient in and of itself– of the strategy to control sediment accumulation 
in the reservoir were to maintain a lower operating level, we can estimate the marginal cost of 
doing so. 
 
The opportunity cost of forgone generation would be higher during peak than off-peak demand 
periods, so let us suppose that reductions in operating height could be timed to occur in off-
peak hours.15  The rated capacity of the Kali Gandaki plant is 144 MW, so it could generate 144 
MWh of electricity in 60 minutes.  If the reservoir height were lowered by one meter from an 
initial level of 110 meters, the resultant loss in power generation would be 144 MWh/110 = 
1,310 kWh.  At an off-peak price of NR 6 per kWh, this works out to NR 7,860 per hour of off-
peak operation.   
 
Suggested operating procedures for the Kali Gandaki Plant call for sluicing operations when 
flow exceeds twice that required to achieve full power generation – a little less than 300 m3 ∙ s-1 
(IHA 2014).  Average flow exceeds this threshold for about four months of the year, from June 
through October:  about 120 days.  The cost of operating at a lower level for 16 hours per day 
during 120 days per year would then be NR 7,860 ∙ 16 ∙ 120 = NR 15.09 million. 
 
This is the seasonal cost, in terms of the value of power generation forgone, from lowering the 
height of the reservoir by one meter during off-peak hours during the rainy season.  We have 
not found information on how effective this would be; that is, would lowering reservoir height 
by a meter during periods of high flow result in enough reduction in sediment accumulation to 
justify the cost of lost power generation?  In the absence of this information, what can be done 
instead is to calculate 
 

                                                      
15   Sediment transport and deposition is only a significant issue during the Monsoon season and few months after.  
Far more sediment is suspended when flow is high than when the river is reduced to a relative trickle.  Average 
daily flow often reaches 1,000 m3 ∙ s-1 during the summer months.  Only 141 m3 ∙ s-1 need be used to achieve full 
power generation.  The surface area of the reservoir is about 65 hectares – 650,000 m2.  With water arriving at the 
rate of, say 850 m3 ∙ s-1, the height of the reservoir could be raised at a rate of 850 m3 ∙ s-1 ∙ 3,600 s per 
hour/650,000 m2 = 4.7 meters per hour.  In short, the height of the reservoir could be varied reasonably quickly 
between peak and off-peak periods when flow is high, so it should be feasible to lower the level when power is less 
valuable and raise it again power is more valuable. 
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𝑁𝑅 15,090,000 ∙ 𝑚−1

𝑁𝑅 3,527 ∙ 𝑚−3
=  4,280 𝑚3 ∙ 𝑚−1; 16    (36) 

 
that is, if maintaining the reservoir at a lower height were part of a cost-effective strategy for 
managing reservoir capacity to maximize the value of service in a steady state, a one-meter 
reduction in reservoir height would need to result in maintenance of incremental volume 
sufficient to store about 4,280 cubic meters of water.  It has been estimated that about 43 
millions tonnes of sediment flows down the Kali Gandaki River every year, and of this, less than 
0.1%, or 43,000 tonnes, which would displace about 30,000 cubic meters of water, is retained.  
The figure of 4,280 cubic meters of water, which would translate into about 6,000 tonnes of 
sediment, is considerably lower than the presumed current rate of deposition.  Conversations 
with experts suggest that capacity loss in the reservoir has, in fact, recently been reversed by 
more scrupulous adherence to recommendations to reduce the level of water in the reservoir 
during the rainy season.  
 
At the time the Kali Gandaki “A” Plant began operations in 2002 live storage capacity was 
estimated to be about 3.7 million cubic meters.  If, over 15 years, that volume was reduced to 
the point that absence of storage capacity began to constrain operations – to less than 3 million 
cubic meters – the annual rate of loss would have to have been on the order of 50,000 m3 ∙ y-1.  
The fact that experts to credit better operating practices with preserving capacity suggests that 
maintaining a lower reservoir height during high-flow periods is, in fact, a cost-effective 
strategy, and perhaps even that more aggressive implementation of that strategy, and/or 
adoption of other measures for sediment control and removal would be justified. 
 
 
 
V. Discussion and conclusion 
 
The above results suggest that policies now in effect for management at the Kali Gandaki “A” 
Plant are justified.  What constitutes an optimal policy may vary considerably with underlying 
variable and parameter values, however.  The marginal cost of sediment reduction prescribed 
in equation (34) varies in the duration of the period during which river flow is low.  The discount 
rate calculation (1 − 𝛿) 𝛿⁄  would take on a value of 19 at a discount rate of 5%, but decline to 7 
for a discount rate of 12.5%.  Another source of considerable uncertainty might be the duration 
of the season during which the reservoir capacity constraint binds.  Water flow is typically low 
from roughly November through May, but it would be difficult to say exactly when the 
constraint binds.  Moreover, the shadow price of the constraint (the difference between the 
𝜆’s) would vary with both the capacity of the reservoir and the flow in the river. 
 

                                                      
16   The units here, of course, could simply be expressed as “meters squared,” but it is useful to underscore that we 
are asking how much volume could be preserved by sacrificing a unit of height. 
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The most critical consideration may be the difference between peak and off-peak marginal 
willingness to pay for power, 𝜆3 − 𝜆1.  It is, perhaps, a heroic assumption to suppose that 
Nepal’s power problems have been resolved to the extent there is only a six Rupee difference 
between marginal willingness to pay between peak and off-peak periods.  Only a few years ago 
some commentators estimated a peak MWP of 40 Rupees or more (Shrestha and Shrestha 
2016).   
 
It is worth underscoring, though, that it is the difference between peak and off-peak MWP, not 
the absolute magnitude of the former, that determines the value of maintaining reservoir 
capacity.  It is the flow of the river, not necessarily the capacity of the reservoir, that 
determines how much power can be generated.  Capacity only affects when power is 
generated.  If it didn’t matter when power were generated – if it were equally valuable at any 
time – reservoir capacity would have little value. 
 
A related issue is what determines MWP for power.  If the Kali Gandaki Plant were Nepal’s main 
source of power generation any increase (or decrease) in the amount of power it provided at a 
particular time would induce a corresponding decrease (or increase) in consumers’ MWP at 
that time.  Recently, however, the Nepal Electricity Authority has relied on power purchased 
from India or independent domestic providers to meet the nation’s demand (NEA 2018).  These 
foreign and independent providers are effectively setting the peak MWP:  what consumers are 
willing to pay is what they will have to pay to the sources that provide it.  In the future, and as 
facilities like Nepal’s large new Tamakoshi Plant come online, the peak-load pricing principles of 
public utility regulation may be invoked.  The implication of these observations is that a facility 
like the Kali Gandaki “A” Plant may in the future be treated even more as a peaking facility than 
it now is.17  This may both ease the task of valuing reservoir capacity and obviate some of the 
finer points of analysis in Section IIIA.  When the operator’s choices do not affect willingness to 
pay for power provided from the plant, the operating procedure generally involves what is 
known in dynamic optimization as a “bang-bang” solution (see also footnote 6):  operate at full 
capacity during the peak period, and reduce discharges to the minimum so as to recharge the 
reservoir as quickly as possible when demand is lowest. 
 
This last observation begs the question of if, perhaps, the analysis presented in this paper is 
“too clever by half”.  It would be a daunting task to prescribe detailed operating rules even if 
extensive and reliable data were available; they are not, so practical advice needs to be more 
limited.  Moreover, an outside researcher would be displaying great hubris if he were to claim 
to have learned more from a brief study than professionals who have been intimately engaged 
in practical operations for years already know. 
 
The conclusions that arise from this inquiry are not so much that anything should be done 
differently, then, than an affirmation that what is being done seems to make sense.  Reservoir 

                                                      
17   In fact, the Nepal Electricity Authority’s most recent Annual Report underscores that the availability of power 
from other sources had led to more peak power generation dedication at Kali Gandaki (NEA 2018). 
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capacity at the Kali Gandaki Plant declined over its first decade and a half of operation.  This 
may well have been because the plant was constructed with excess capacity, in anticipation 
that some filling would occur.  On observing that this has occurred, however, efforts have been 
made to assure that sediment deposition is controlled by, among other things, sacrificing some 
power production by reducing the height of the reservoir in high-flow periods. 
 
We can derive some approximate figures for the opportunity cost of maintaining the lower 
reservoir level, and, subject to the proviso that the estimates both of these costs and the 
benefits of maintaining capacity are subject to considerable imprecision, the costs seem to 
suggest that, if anything, still more aggressive control measures might be adopted.  Thesemight 
include occasional reservoir flushing and reduction of erosion in the catchment due to road 
building and other causes.18 
 
Finally, inasmuch as the value of reservoir capacity is determined by the difference between 
MWP for peak and off-peak power, continued improvement in the supply system might 
eventually reduce the importance of having reservoir capacity to generate extra peak power.  
By the same token, however, uncertainties concerning the degree to which expansions in 
system supply will continue to keep pace with growing demand, it will likely to be prudent to 
continue to maintain reservoir capacity in case peak demands again spike. 
  

                                                      
18   There is little that could realistically be done to dramatically reduce sediment delivery.  The headwaters of the 
Kali Gandaki lie high in the Himalayas, and between glaciers and active seismology, a tremendous volume of 
material will be transported regardless of land use closer to the reservoir.  Local disturbances may, however, 
contribute larger particles – stones, rather than silt – and so measures like road-building restrictions might be 
relatively effective on the margin. 
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