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While a major focus of econometric climate
impact assessments on agriculture has been
prediction of overall impacts, future research
should identify impact mechanisms and
adaptation possibilities. Clarifying specific
adaptation possibilities facilitates not only the
assessment of potential welfare impacts, but
also offers the possibility of evaluating policies
for improved adaptation. This depends on
capturing mechanisms that provide farmers’
abilities to adapt to new climatic constraints in
counter-factual conditions.

These impact mechanisms are represented
with elaborate detail in agronomic crop mod-
els that convey the science of crop produc-
tion. However, the agronomic models are not
well integrated with revealed preferences (e.g.,
Adams 1989, Adams et al. 1990, Easterling
et al. 1992, Rosenzweig and Parry 1994). Thus,
congruence of agronomic adaptation possibil-
ities with economic behavior that might be
observed in counterfactual circumstances is
open to question.

Econometric methods have attempted to
represent adaptation implicitly by estimating
reduced-form relationships between economic
variables and arbitrary forms of aggregate
weather measures. Leading examples include
the Ricardian approach based on cross-section
regression of land prices on weather variables
(Mendelsohn, Nordhaus, and Shaw 1994 and
Schlenker, Hanemann, and Fisher 2005, hence-
forth MNS and SHF) and the profit panel
approach consisting of fixed-effects regressions
of net annual revenue on weather variables
(Deschênes and Greenstone 2007, henceforth
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DG). Thus, modeling shortcuts have been
used to assess potential impacts of exogenous
weather variation without modeling decision-
making and adaptive innovation explicitly, and
without consideration of the specific weather
variables of importance in the science of
crop production. Therefore, land prices and
observed net revenues may capture farmers’
optimal adaptive behavior with an unknown
degree of imperfection.

While these highly reduced-form appro-
aches have provided first-cut estimates of
climate effects, they do not reflect the mecha-
nisms through which impacts occur, which calls
into question the feasibility of predicted adap-
tive behavior as well as robustness to omitted
variables bias. Aggregated approaches also
prevent identification of structural relation-
ships necessary to consider adaptation policy
assessment and cross-validation.

Recently, research using the econometric
approach has focused increasingly on impact
mechanisms partly as a means of validating
results from reduced-form approaches. This
includes renewed interest in statistical yield
models (e.g., Schlenker and Roberts 2009,
Lobell and Burke 2010) because crop yields
represent major mechanisms through which
higher temperatures may affect producer wel-
fare. However, most yield models rely on
season-long weather variables that overlook
the varying sensitivity of crops during the grow-
ing cycle, and implicitly assume that growing
seasons remain fixed.

Under-representation of flexibility causes
overestimation of yield impacts. An exam-
ple is estimation of heat effects ignoring
the flexibility offered by lengthening of the
growing season. Conventional agronomic wis-
dom established through field trials on annual
crops is that stress during the relatively short
flowering period reduces yield more than in
any other stage of growth (Fageria, Baligar,
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and Clark 2006, p. 89). This phenomenon is
substantial and statistically significant in US
county corn yields (Ortiz-Bobea 2011). Thus,
a longer season may allow flexibility to shift
the flowering period away from a hotter tra-
ditional flowering period. This flexibility is
ignored by typical econometric approaches,
although common in the agronomic models.
Other research has considered the agronomic
analysis of agricultural zones (Newman 1980,
Adams et al. 1990, Kaiser et al. 1993) by con-
sidering potential changes in crop mix using
multinomial logit models (Mendelsohn and
Dinar 2009, ch. 5). However, these possibilities
are typically considered separately rather than
jointly. Of course, capturing all adaptation pos-
sibilities is a daunting task given the diversity of
agriculture. But accounting for major and obvi-
ous adaptation strategies based on revealed
preferences provides a critical foundation for
adaptation policy analysis. Preliminary work,
including Ortiz-Bobea (2012) and an exam-
ple in this paper, implies that climate change
assessment should not stop short of exploring
these possibilities.

A Structural Approach

This paper proposes an econometric frame-
work for assessing potential impacts of climate
change on agriculture that tractably unpacks
some of the major impact mechanisms. Follow-
ing the implicit definition in other empirical
work, we define climate as the probability dis-
tribution of all aspects of weather relevant to
a particular period of time, but (i) define the
relevant weather variables for our problem
based on scientific knowledge of the underly-
ing mechanisms of production, and (ii) use a
behavioral model as an empirical underpinning
to capture adaptation given those mechanisms.
The key element is the explicit treatment of
climate change within a classical constrained
optimization framework given potential adap-
tive private and public actions. In this paper,we
consider only the simple behavioral model of
profit maximization, but more general appli-
cations based on revealed preferences are
planned.

As an example, higher temperatures lead
to the detrimental effects of hotter summers,
but also lengthen the frost-free period, offer-
ing farmers the option of longer-season culti-
vars, different crops, or even relay cropping.
Only by a disaggregated approach can the

potentially dominating mechanisms of both the
detrimental and beneficial aspects of climate
change be revealed. And only by combining
agronomic knowledge with revealed pref-
erences can these potential counter-factual
mechanisms be properly assessed. In addition,
this approach can serve to cross-validate qual-
itatively conflicting results of current leading
econometric approaches (see SHF and DG).

For structural modeling, our proposed
approach, like most others, presumes prior
knowledge of the distribution of climatic inputs
and the major climatic constraints imposed
by climate change. Specifically, climatic inputs
are characterized by the timing and level of
their exogenous supply. Climatic constraints
arise when the supply of climatic inputs ren-
der production infeasible. An example is the
time of onset of the growing season which is
driven by the last spring frost in the Amer-
ican Midwest. Adequate models must deter-
mine whether each constraint is binding in
each locality and how its variation contributes
to welfare (i.e., to each constraint’s shadow
price). A disaggregated approach can deter-
mine the significance of individual aspects of
climate change and their geographic distri-
bution. Shadow prices can then guide invest-
ment in adaptation research and related public
policy, both topically and financially.

We focus on careful treatment of the phys-
ical role of weather variables in production
as understood in the production sciences. For
example, farmers in temperate US regions
choose cultivars that reach maturity before fall
frosts because freezing temperatures damage
non-mature crops and result in significant yield
loss. Reduced-form models attempt to capture
this effect through correlations with weather
variables such as average October temperature
(MNS) orApril-to-September growing degree-
days (SHF, DG). However, arbitrary calendar
variables are likely correlated (imperfectly)
with relevant omitted factors, blurring their
interpretation for adaptation policy analysis. In
contrast, our approach is to rely on variables
directly related to the probability distribution
of the first fall frost date whereby the benefit
of reaching maturity only a week or two later
would be reflected in a simulation.

Estimates of such adaptation mechanisms
can provide a transparent framework to assess
the diverse effects of climate change on the
agriculture. Preliminary results we exemplify
below call for a fertile research agenda to
estimate effects of individual climate change
constraints. Such models hold promise for

 at N
ational U

niversity of Singapore on January 14, 2013
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


246 January 2013 Amer. J. Agr. Econ.

bridging the gap between the econometric
and agronomic modeling families by develop-
ing a common ground for analysis. Further,
structural modeling in a theoretical frame-
work where relationships are qualitatively
understood at the outset can reduce omitted
variable bias and potential misinterpretation
of reduced-form counterparts. For example,
reduced-form approaches can provide little
basis for determining expected qualitative rela-
tionships. Structural approaches, on the other
hand, can answer questions in terms of the esti-
mated strength of qualitatively clear compo-
nents necessary to facilitate welfare and policy
analysis.

An Optimization-Based Model

Our conceptual framework of behavior is a
constrained optimization model where the
farmer determines a vector of choice vari-
ables or weather-dependent choice rules, x(·),
including choice of crop mix and cultivars,
other technology choices such as machinery
and irrigation/drainage investments, planting
dates, and factor input levels. The optimiza-
tion problem for a risk-neutral farmer with
opportunity cost π0 is

max
x(·)≥0

π(x(·), p, w, θ) ≡ p(Q(θ)).q(θ, x(θ))(1)

− w(θ) · x(θ)s.t.π ≥ π0

where p and w are output and input price vec-
tors, Q and q are market and farmer output
vectors, and the vector θ escribes the timing
and level of the exogenous weather inputs.

Applying the envelope theorem to the profit
function associated with (1) yields a decompo-
sition of the long-run change in profit from a
change in climate,

∂π

∂θ

∣∣∣∣
x=x∗

= ∂p
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∂Q
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q(θ, x∗(θ))(2)

+
(
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)

where x∗ is the optimal decision vector. The
first term represents the effect of output price
on profit stemming from the large-scale effect
of climate on aggregate supply given aggregate
demand. This term is potentially significant if

climate change affects production and product
mix over broad areas. Grasping its magnitude
requires estimating the correlation of hetero-
geneous regional climate change impacts and
how they aggregate into global agricultural
output and consequent local price impacts.This
difficulty likely explains why climate change
studies typically assume fixed prices (e.g. MNS,
SHF, DG). However, this effect is likely to
have attenuating implications because equi-
librium price adjustments tend to spread eco-
nomic effects across a broad array of markets
and, thus, soften impacts on the most affected
markets through product substitution.

The second term represents the contribution
of climate change to profit through its effect on
the individual farmer’s output. Crop output can
be expanded as the product of acreage a(θ) and
yield y(θ, x(θ)) where

∂q(θ, x(θ))

∂θ
= ∂a(θ)

∂θ
· y(θ, x(θ))

+
(
∂y(θ, x(θ))

∂θ
+ ∂y(θ, x(θ))

∂x
∂x(θ)

∂θ

)
· a(θ)

and a(θ) is a subvector of x(θ). This expression
highlights the importance of focusing carefully
on the response of both the optimal crop mix
and the yields of alternative crops to climate
change, and how particular climate-dependent
farmer responses affect each.

The third term in (2) measures the cost effect
of climate change associated with climate-
induced changes in input prices and input use.
The former might stem from changing demand
pressure on input markets. The latter arises
from a wide range of possibilities for chang-
ing cultivation practices and crop mix. For
example, a farmer might purchase more irri-
gation water on a given crop to compensate
for reduced rainfall or adopt mitigating mea-
sures to maintain arable land in the event of
an increase in farm-wide flooding, drought, or
consequent adverse pest populations.

Such an optimization model thus provides
a framework in which to analyze separate
climate change impact mechanisms. Major
adaptive behaviors within each channel can
be explored separately to identify policy-
relevant insights for improved adaptation. The
model can obviously be expanded to consider
additional mechanisms that affect adapta-
tion subject to the limitations of econometric
identification. For example, allowing risk
aversion can facilitate welfare analysis of
changing climate variability, in which case an
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analysis of reservation utility can shed light on
agricultural regions that might no longer farm,
or other regions that might begin farming.

An Empirical Illustration

Obviously, an empirical illustration of specific
modeling of each of the mechanisms delineated
in this model is beyond the scope and space
limitations of this paper. Alternatively, we
present an empirical example that explores the
yield impact channel, ∂y(θ, x(θ))/θx · ∂x(θ)/∂θ,
to illustrate subtle but important potential for
plausible adaptive behavior and opportunities
that tend to remain unexplored in reduced-
form models. In particular, we explore the
potential effect on corn yield of a 5◦F uniform
warming through both extreme heat during
different crop production stages and the widen-
ing of the frost-free period. We explore how
the climate-dependent choice of planting date,
represented by ∂x(θ)/∂θ, may affect yield.

The example is fundamentally based on
a statistical corn yield model with weather
regressors matched to key stages of the
corn production cycle, namely the vegeta-
tive, flowering, and the grain-filling periods
(see Ortiz-Bobea 2011). This allows estima-
tion of phenological regression coefficients
that are disconnected from fixed calendar peri-
ods (Dixon et al. 1994). The advantage of this
approach is that the regression results can be
easily employed in simulations that allow for
shifting growing seasons. Geographic variation
in growing seasons can then be used to project
future variation in growing seasons under cli-
mate change. The model specification is

yit = �s(β1,sPrecits + β2,sPrec2
its + β3,sGDDits

+ β4,s DDDits) + �(t) + ai + εit

where yit is yield in county i in year t; s is
the set of key stages of corn production; Prec,
GDD and DDD are precipitation, growing

degree-days (8–32◦C) and damaging degree-
days (>34◦C); �(t) is a quadratic time trend;
and the ai are county effects.

We use a county-level corn yield panel
dataset (1985–2005) from a mostly rainfed area
covering 8 states, which represents over 65 per-
cent of US corn production. County produc-
tion and state crop progress data were obtained
from USDA-NASS and daily weather data for
the 1950–2005 period is from Schlenker and
Roberts (2009).

Following the literature, simulated impacts
are obtained by multiplying estimated param-
eters by the projected mean climate change for
the corresponding variables and time frame.
However, the phenological approach allows
shifting time frames for crop stages. In this con-
text, climate differences are obtained by sub-
tracting current mean climate for the current
time frame of a crop stage from the projected
mean climate for its simulated time frame. This
contrasts with models based on monthly vari-
ables that keep the time frame, and therefore
the growing season, fixed.

Results from the baseline corn yield model,
assuming a fixed growing season (table 1),
reflect estimated average damages of 26.3 per-
cent for the sample. Of course, these damages
have substantially heterogeneous geographic
distribution, which raises significant issues of
potential geographic adaptation of crop mixes,
but we leave that analysis to another paper.
Interestingly, over two-thirds of this damage is
associated with high temperature during the
flowering period, which is a short period in
the full growing season (approximately 2-3
weeks in the June-August period,depending on
location).This sharp sensitivity during the flow-
ering period coincides with agronomic findings,
but contrasts sharply with econometric models
that use season-long weather variables.

The resulting optimization problem is
represented in figure 1. The objective is to
assess whether relaxation of the freezing
constraints in the spring and fall provide

Table 1. Yield Sensitivity by Corn Growth Stage

Yield impact from a 5◦F Share of stage
warming with a fixed growing influence in total

Corn growth stage season (%) / (bu/acre) yield impact (%)

Vegetative (Planting to flowering) −8.9/−11.7 33.3
Flowering (4 weeks around silking) −17.6/−23.0 65.8
Grain-filling (Flowering to maturity) 0.3/0.3 0.9

Full cycle −26.3/−34.4 100
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Figure 1. Key corn stages and climatic constraints in Iowa

sufficient flexibility of planting dates for farm-
ers to reduce exposure to extreme heat during
the sensitive flowering period.

If farmers in the Midwest are constrained
by the length of the frost-free period, then
we should expect a spatial pattern of earlier
planting dates coupled with earlier frost-free
days in the spring to emerge. This pattern is
indeed verified in the first panel of figure 2. A
similar pattern might also be expected in the
fall,with later maturation dates associated with
later first fall frosts if the fall frost date is con-
straining. The second panel of figure 2 shows
this pattern up to a point (around day 290 of
the year) after which there is a clear discon-
nect. Clearly, extending the frost-free period
as depicted in the lower part of figure 2 shows
that states with a narrower frost-free period
tend to plant and reach maturity systematically
at dates with higher probabilities of freezing.
Only when the frost-free period reaches 180
days does the probability of frost at matura-
tion decline to zero.These data suggest that the
spring frost threshold is binding for all states,

but the fall threshold is only binding for states
with less than 180 frost-free days.

To explore the potential effect of shifting
the growing season in the year by altering
the planting date, we simulated earlier plant-
ing dates by shifting the planting date earlier
in one-day increments until the planting date
coincides with the new spring freezing thresh-
old under a 5◦F uniform warming. We also
shifted the planting date later until the matu-
ration date coincides with the new fall freezing
threshold. At each increment, a new climate
dataset was constructed for the time windows
corresponding to the vegetative, flowering, and
grain-filling periods. The spring and fall thresh-
olds were set to maintain the current probabil-
ity of freezing levels at planting and maturation
for each state. This confines the simulation to a
plausible range.

Simulation results are presented in figure 3
where each line represents an acreage-
weighted state-level yield response to the shift
in planting date. All states show considerable
yield losses without planting adaptation as
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Figure 2. Corn growing season and freezing dates

shown by the negative intercepts. The down-
ward sloping curves,however, show that earlier
planting under a 5◦F warming scenario reduces
damages from higher temperatures. This is the
result from shifting the most sensitive period
of the production cycle away from higher tem-
peratures in the summer months.Table 2 shows
that earlier planting by around 2 weeks results
in a significant reduction of damages, ranging
from 30 to 70 percent depending on the state.

In terms of value, this represents around $3.4
billion for the 8 states combined, or 14 per-
cent of the region’s $24 billion annual average
production for the 2000–2010 period. For com-
parison, SHF estimate $5.0 billion in annual
damages for the entire US agricultural sec-
tor with the same warming scenario together
with an 8 percent increase in precipitation; DG
estimate $1.3 billion in annual benefits for an
alternative scenario.
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Figure 3. Overall state yield response and planting adaptation

Table 2. Corn Yield Impacts From a Uniform 5◦F Warming

Without With change Impact Optimal Savings from
change in in planting mitigated with change in adaptation

planting date date (%)/ with adaptation planting (Million
(%)/ (bu/acre) (bu/acre) (%) date (days) 2010 US$)

Illinois −34.7/−47.3 −21.9/−29.9 36.9 −16 $1, 371
Indiana −26.8/−35.3 −14.9/−19.6 44.4 −18 405
Iowa −27.1/−37.2 −18.0/−24.7 33.6 −14 848
Michigan −19.2/−21.6 −6.6/−7.5 65.3 −18 168
Minnesota −20.6/−26.8 −11.2/−14.6 45.5 −14 330
Ohio −21.4/−27.0 −10.4/−13.1 51.4 −17 116
Pennsylvania −23.9/−24.7 −7.0/−7.2 70.6 −20 61
Wisconsin −17.3/−20.8 −7.4/−8.9 56.8 −15 102

Full sample −26.3/−34.4 −14.0/−18.5 44.1 −15.8 $3, 401

Conclusion

In this paper we propose,and provide evidence
on, the need for a model that elucidates some
of the major mechanisms through which both
the damaging effects and adaptation possibil-
ities from climate change impact agriculture.
We submit that a transparent structural econo-
metric approach can open the door to more
detailed adaptation policy analysis grounded
in revealed preferences. A structural approach

grounded in the science of crop production
should also allow cross-checking the plausi-
bility of overall reduced-form estimates. Our
empirical example shows that plausible adap-
tation strategies with little extra cost could
significantly reduce projected corn yield dam-
ages for the 8 states in the sample. The
results are demonstrated by a yield model
that introduces disaggregated phenological
weather variables matched to the production
cycle.
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Several limitations of our proposed app-
roach should be borne in mind. Crop progress
data is available for major producing states
only at the state level, obscuring some vari-
ations within states. Also, we have not con-
sidered other agronomic aspects, such as the
accelerating effect of higher temperature on
the crop cycle, the potential to adopt different
cultivars, or the influence of lower solar radi-
ation on crop photosynthesis during shorter
spring days. Our model also assumes three
distinct crop stages where weather inputs are
separable.

The complexity of the effect of environ-
mental conditions on yield typically leaves
researchers with a choice between imperfect
proxies. Some of these may imply strong
restrictions on farmer flexibility, as our exam-
ple shows. Weather variables that better cap-
ture the effect of environmental conditions and
their interaction, such as water balance mea-
sures tied to relevant crop stages, also offer
new tools for more transparent methods of
econometric climate change assessment that
may help bridge the gap between alternative
methods used for assessing impacts. Indeed,
better capturing of the effect of weather
variables on production allows better assess-
ment of the physical constraints farmers face
but, more importantly, facilitates assessment
of the possibilities available for adaptation
that have received relatively less attention to
date.
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