
Economics of Networks III

Sanjeev Goyal University of Cambridge

2017 Winter School
Delhi School of Economics

Communities in society

- We study interaction between communities with conflicting views on norms, e.g., language, dress, hospitality, food and diet.
- Diversity is valued but at the same time it is also viewed as a major social challenge.
- Aim: understand mechanisms that shape conformism vs diversity.

Case for diversity

- Valued: diversity respects individual preferences and values.
 This is important in itself in a liberal society. Diversity brings variety and that may have value in itself.
- Diversity may also have instrumental value as it potentially brings different perspectives into play and that may facilitate best practice across a range of societal contexts.

Challenges to diversity

- Challenge: contemporary politics in many parts of the world.
- Brexit is at least partly driven by recent immigration and a fear of further large scale immigration.
- Immigrant ghettos in European cities are viewed as a social and economic problem.
- Traditional argument: communities choose segregation over integration.

In this lecture

- We study coordination problem with many individuals.
- Individuals gain payoffs by coordinating with others.
- There are two actions and individuals differ on preferred action.
- A battle of sexes in a group setting..
- Question: when will a minority conform with the majority or and when will it go its own separate way?

Background

- Coordination problems: Schelling (1960), Gauthier (1972).
- Anderlini and Ianni (1996), Blume (1993), Ellison (1993), Goyal and Janssen (1997): interaction structure matters for coordination.
- Early work with simple networks: lattices and rings.
- Goyal and Vega-Redondo (2005) Jackson and Watts (2002): players choose networks and then play a coordination game.
- Advani and Reich (2015), Ellwardt et al. (2016): introduce heterogeneous preferences.

Framework: Social Coordination with Heterogenous Preferences

- Two types of individuals and two actions
- Everyone prefers to coordinate on same action
- Type A prefers action a, type B prefers action b
- Individuals choose actions simultaneously
- Two settings: exogenous interaction vs. choose links and action
- Question: what are the mechanisms that facilitate conformism and diversity?

Model

Goyal, Hernandez, Martinez, Moisan, Munoz, Sanchez 2017

- Players: $N = \{1, 2, ..., n\}$ with $n \ge 3$.
- Two types: $\theta_i \in \{a, b\}$.
- Two stage game: first choose link proposals and then choose actions.
- First stage: every player proposes links to everyone else. Links are binary, $g_{ij} \in \{0, 1\}$.
- Define $\bar{g_{ij}} = g_{ij}g_{ji}$. Set of undirected networks is \overline{g} .
- Second stage: every player i chooses action $x_i : \overline{g} \to \{a, b\}$.
- Neighbours: $N_i(\overline{g}) = \{j \in N : \overline{g}_{ij} = 1\}.$

Model

• Following Ellwardt et al (2016), the payoff to player i from $\mathbf{s} = (x, g) = (x_1, ..., x_n, g_1, ..., g_n)$:

$$u_i(\theta_i, x, \overline{g}) = \lambda_{x_i(\overline{g})}^{\theta_i} (1 + \sum_{j \in N_i(\overline{g})} I_{\{x_i(\overline{g}) = x_j(\overline{g})\}}) - |N_i(\overline{g})|k$$
 (1)

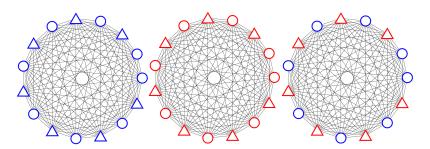
 $I_{x_j=x_i}$ = indicator function for i's neighbour j who choose same action as i.

- $\lambda_{x_i(\overline{g})}^{\theta_i} = \alpha \text{ if } x_i(\overline{g}) = \theta_i; \ \lambda_{x_i(\overline{g})}^{\theta_i} = \beta \text{ if } x_i(\overline{g}) \neq \theta_i.$
- Assume $\alpha > \beta$ and $k \in \mathbb{R}$. Interesting case: $\beta > k$

Proposition: Exogenous Interaction

Let
$$\chi_i(\overline{g}) = \{j \in N_i(\overline{g}) : x_i^* = \theta_i\}.$$

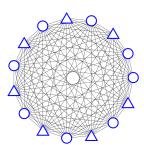
Given an undirected network \overline{g} , action profile x^* is a Nash equilibrium if and only if for any $i \in N$:


$$x_{i}^{*} \begin{cases} = \theta_{i} & \text{if } |\chi_{i}(\overline{g})| > \frac{\beta}{\alpha + \beta} |N_{i}(\overline{g})| - \frac{\alpha - \beta}{\alpha + \beta} \\ \neq \theta_{i} & \text{if } |\chi_{i}(\overline{g})| < \frac{\beta}{\alpha + \beta} |N_{i}(\overline{g})| - \frac{\alpha - \beta}{\alpha + \beta} \end{cases}$$

Example: Complete Network

Let N_O and N_A be the sets of players who prefer **b** and **r**.

Fix a complete network \overline{g} . In Nash equilibrium x^* :


- Conformity $x_i^* = x_j^* \in \{b, r\}$ for all $i, j \in N$ if $n \ge \frac{\alpha}{\beta}$.
- **Diversity** $x_i^* = \theta_i$ for all $i \in N$ if $|N_O|$, $|N_{\Delta}| \ge \frac{\beta(n+1)}{\alpha+\beta}$.

Proposition: Efficient Outcome in Complete Network

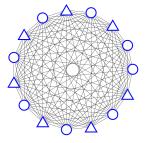
Let aggregate welfare be given by sum of utility of all players. A socially efficient outcome x entails all players conforming to the majority's preferred action.

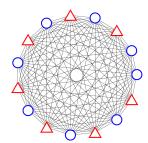
 \Rightarrow For every $i, j \in N$, $x_i = x_j = \arg \max_{c \in A} |\{k \in N : \theta_k = c\}|$

Endogenous Interaction: Pairwise stable Networks

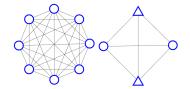
A network-action pair $(\overline{g}, x(\overline{g}))$ is pairwise stable if:

- $x(\overline{g})$ is an equilibrium action profile given network \overline{g} .
- for every $\overline{g}_{ii} = 1$, $u_i(x, \overline{g}) \ge u_i(x, \overline{g} \overline{g}_{ii})$ and $u_i(x, \overline{g}) \ge u_i(x, \overline{g} - \overline{g}_{ii})$, where x is such that $x_{-ii}(\overline{g}-\overline{g}_{ii})=x_{-ii}(\overline{g}),$ and $x_l \in \operatorname{arg\,max}_{x_l' \in X_l} u_l(\theta_l, x_l', x_{-l}, \overline{g} - \overline{g}_{ii}) \text{ for } l \in \{i, j\}.$
- for every $\overline{g}_{ii} = 0$, $u_i(x, \overline{g}) \ge u_i(x, \overline{g} + \overline{g}_{ii})$ or $u_i(x,\overline{g}) \geq u_i(x,\overline{g}+\overline{g}_{ii})$ where x is such that $x_{-ii}(\overline{g}+\overline{g}_{ii})=x_{-ii}(\overline{g})$, and $x_l \in \operatorname{arg\,max}_{x_l' \in X_l} u_l(\theta_l, x_l', x_{-l}, \overline{g} + \overline{g}_{ii}) \text{ for } l \in \{i, j\}.$

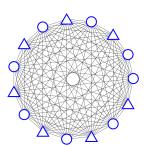

Pairwise Stable Networks: Partial Characterization


Suppose k = 0. In pairwise stable equilibrium $s^* = (\overline{g}^*, x^*)$, outcomes include

- (i) Full Integration with Conformity.
- (ii) Full Segregation with diversity.
- (iii) Complete integration with diversity.


Pairwise Stable Networks: Integration

Pairwise Stable Networks: Segregation



Endogenous Interaction: Efficient outcome

A socially efficient outcome s = (g, x) entails integration and conformity with the majority's preferred action.

$$\Rightarrow$$
 For every $i, j \in N$, $\bar{g}_{ij} = 1$ and $x_i = x_j = \arg\max_{c \in A} |\{k \in N : \theta_k = c\}|$

Summary

- Exogenous complete network:
 - 1. Multiple equilibria: (1) conformity and (2) diversity
 - 2. Types relevant only in diversity equilibrium
 - 3. Conformity is aggregate welfare maximizing
- Endogenous setting:
 - 1. Multiple equilibria: (1) integration with conformity, (2) segregation with diversity (3) Integration with diversity
 - 2. Integration with conformity is aggregate welfare maximizing
- How does endogenous linking shape equilibrium selection?

Design

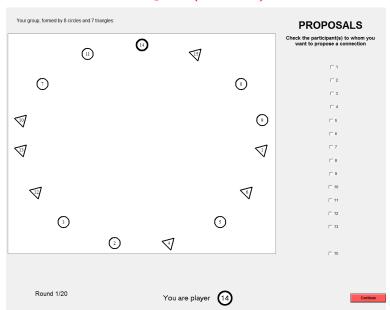
Experimental variables:

- Freedom of linking
 - ⇒ Exogenous vs. endogenous network
- Risk of linking
 - ⇒ Different cost of linking with someone who mis-coordinate

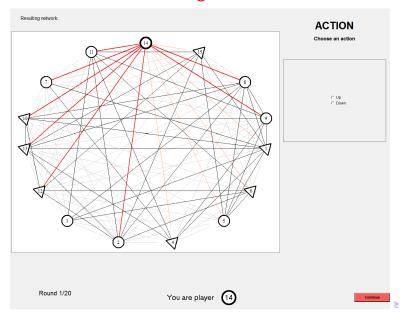
Design

Network ($N=15$)								
Exogenous	Endogenous							
(complete net)	(start from empty net)							
-	k = 0	k=2	k = -0.3					
$\alpha = 4$	$\alpha = 4$	$\alpha = 6$	$\alpha = 4$					
$\beta=2$	$\beta = 2$	$\beta = 4$	$\beta = 2$					
EXO	ENDO	COSTS	SUBSIDY					
(6 groups)	(6 groups)	(6 groups)	(6 groups)					

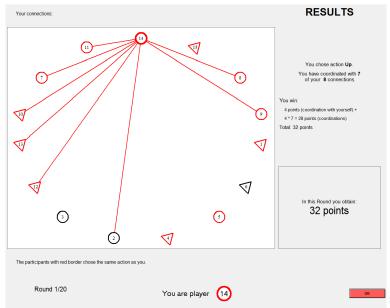
Some predictions


$$|N_O| = 8$$
 and $|N_{\Delta}| = 7$:

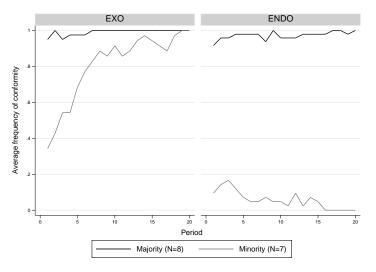
	Equilibrium Payoffs						
Player type	En	dogenous	Exog	enous			
Minority (Δ)	30+k 60+k	28+k	30	28			
Majority (O)	60+k	32+k	60	32			


Further Details

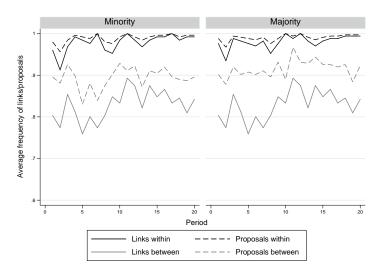
- Experiment run at LINEEX (University of Valencia)
- 6 groups / treatment
- Sessions of 3 groups (2 sessions / treatment)
- 5 trial rounds (no payoff) + 20 rounds (actual game)
- Fixed group matching
- Conversion rate: 50 points= 1 euro
- Mean earnings = 18 euros
- Mean duration = 100 mins
- Demographics: age: from 18 to 30; 42% male, 58% female


Stage 1 (round 1)

Stage 2



Feedback stage 2



Conformity: Exogenous versus endogenous links

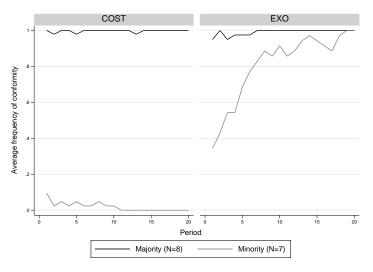
Conformity: Exogenous versus endogenous links

Connectivity: FREE Links

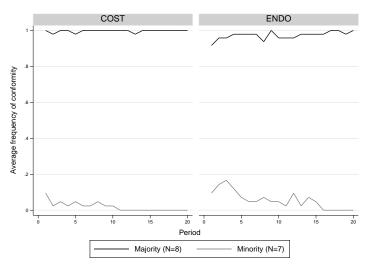
Results: summary

- Exogenous complete network:
 - Conformity on majority's preferred action.
 - Efficient outcome.
- Endogenous linking:
 - Very dense network and diversity in actions
 - Segregation across communities (with positive linking costs)
 - Large welfare losses

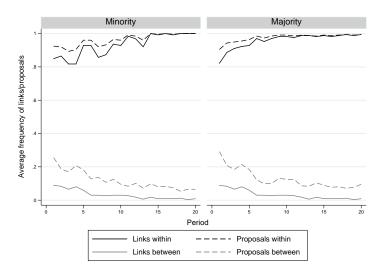
Hypothesis: The Network as a Signal

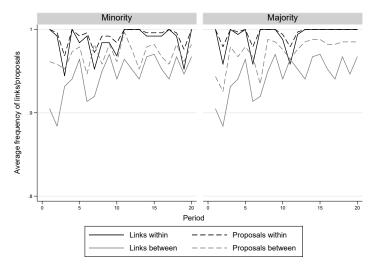

- Coordination problem is very complicated
- Links are a route to signal intention on play
- Players will be willing to pay for the signal
- Positive cost link: proposal to other type signals intention to coordinate
- Negative cost link: not proposing to other type signals intention to play own preferred action.

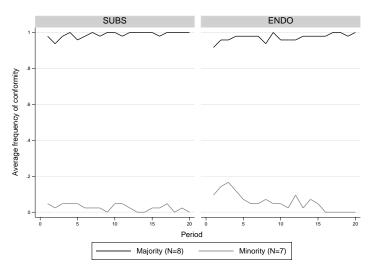
Cost Treatment

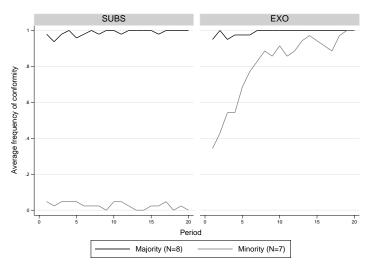

 \Rightarrow Animations

Explanation


Cost Treatment


Cost Treatment


Connectivity


The Negative Cost Treatment: SUBSIDY

Diversity: Negative cost links vs Free links

Diversity: Negative cost links vs Exogenous

Regression on linking and conformity

```
xtreg net_conform_min_norm rate_links_group period, cl(treat)
Random-effects GLS regression
                                                Number of obs
                                                                           600
Group variable: group
                                                Number of groups =
R-sq:
                                                Obs per group:
     within = 0.1221
                                                              min =
     between = 0.1048
                                                              avg =
                                                                          20.0
     overall = 0.1031
                                                              max =
                                                                            20
                                                Wald chi2(2)
                                                                         31.73
corr(u i, X) = 0 (assumed)
                                                Prob > chi2
                                                                  =
                                                                        0.0000
```

(Std. Err. adjusted for 5 clusters in treat)

net_conform_mi~m	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
rate_links_group period _cons	.6874037 0004691 1653395	.3045453 .0055491 .1737085	2.26 -0.08 -0.95	0.024 0.933 0.341	.090506 0113452 505802	1.284301 .010407 .1751229
sigma_u sigma_e rho	.46032431 .19024515 .85411354	(fraction	of varia	nce due t	:o u_i)	

Concluding remarks

- Diversity is valued but it also poses a major challenge.
- We study interaction between communities that have differing views.
- Develop a model: coordination with heterogeneous preferences.
- Theory is permissive: variety of outcomes possible in equilibrium.
- Study mechanisms for equilibrium selection.
- Hypothesis: networks are a signal for intentions in the coordination game.

Main Findings

- Allowing people to choose links leads to diversity
 - With exogenous complete network: conformism
 - With endogenous free links: close to full integration but diversity.
- Links are a signalling mechanism
 - With positive cost: segregation and diversity.
 - With negative cost: high integration and diversity.