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1 Nash equilibrium

• In Nash (PNAS, 1950) the 22 years old John Nash defined an equilib-
rium point in a finite normal-form game as a (pure or mixed) strategy

profile that is a best reply to itself

— He established existence of such points in all finite games by way

of Kakutani’s fixed-point theorem

— A year later he gave an ingenious proof, based on Brouwer’s fixed

point theorem. A proof that today is used for proving the existence

of Walrasian equilibrium in exchange economies.

• But to what question is ”Nash equilibrium” the answer?



John Nash 

(born 1928, PhD 1950)



2 John Nash’s two interpretations

• In his Ph. D. thesis (Princeton, 1950), Nash sketches informally two
interpretations:

— The ”rationalistic”, or ”epistemic” interpretation

— The ”mass action”, or ”evolutionary” interpretation

2.1 The rationalistic interpretation

1. The players have never interacted before and will never interact in the

future



2. The players are rational in the sense of Savage, The Foundations of

Statistics (1954); they play optimally under some probabilistic belief

about what other players do

3. Each player knows the game (all players’ strategy sets and preferences)

• However, this clearly does not imply that they must play a Nash equi-
librium, not even if they know that all players know the game and are

rational

• In fact not even if the game and all players’ rationality is common
knowledge (CK) among them (Lewis, 1969, Aumann, 1976)



Counter-examples:

Coordination game:
 

 2 2 0 0
 0 0 1 1

Zero-sum game:
 

 1−1 −1 1
 −1 1 1−1

Game with a unique NE:

  
 7 0 2 5 0 7
 5 2 3 3 5 2
 0 7 2 5 7 0



• Question: What is then implied by CK[game&rationality]?

• Answer: That some rationalizable strategy profile will be played

Definition 2.1 (Bernheim, 1984, Pearce, 1984) A pure strategy is ratio-

nalizable if it survives the iterated elimination of pure strategies that are

not best replies to any (pure or mixed) strategy profile.

• Notation: Write  ⊆  for player ’s set of rationalizable pure strate-

gies, and  = × for the set of rationalizable pure-strategy profiles.

Write  = × for the set of pure-strategy profiles that survive the

iterated elimination of strictly dominated strategies



• Facts:

— For any finite game: ∅ 6=  ⊆ 

—  = 2 ⇒  = 

— All Nash equilibria only use rationalizable strategies



2.2 The mass-action interpretation

1. For each player role  ∈  = {1 2  } in the game there is a large
population of ex ante identical individuals

2. The game is recurrently played, in time periods  = 0 1 2 3  by

randomly drawn individuals, one from each player population

3. Individuals always play pure strategies

• A mixed strategy for a player role is a statistical distribution over the
pure strategies used in that role

• Nash (1950, Ph.D. thesis) argues informally that if all individuals avoid
suboptimal pure strategies, and the population distribution of strategy

profiles is stationary, then it constitutes a Nash equilibrium



Reconsider the above examples in this interpretation!

Coordination game:
 

 2 2 0 0
 0 0 1 1

Zero-sum game:
 

 1−1 −1 1
 −1 1 1−1

Game with a unique NE:

  
 7 0 2 5 0 7
 5 2 3 3 5 2
 0 7 2 5 7 0



2.3 Another example

• A large population of individuals who are now and then randomly
matched into pairs to together run a business partnership, or write
a joint paper for their master’s degree, or, more generally, solve some
work task together

• To work or shirk?
 

 3 3 0 4
 4 0 −1−1

• Their roles are symmetric and they are not told that one is ”player 1”
and the other ”player 2” (so they cannot condition on their player role)

• What will happen? In the rationalistic interpretation? In the mass-
action interpretation for a single population?



• Such a game is usually called ”Hawk-Dove”, sometimes ”Chicken”
(Film: ”Rebel without a Cause”), or ”Brinkmanship” (Bertrand Rus-

sell about the cold war),



• When illustrating their concept of evolutionary stability, Maynard Smith
and Price (1973) illustrated it with precisely such a game, which they

then called Mouse and Dove

• Heuristically, an evolutionarily stable strategy (ESS) is a (pure or

mixed) strategy that ‘cannot be overturned’ once it has become the

‘convention’ in a population

• The mixed strategy to randomize 50/50 between ”work” and ”shirk”
in the above example turns out to be its unique ESS



3 Evolutionary game theory

• Evolutionary process =

= mutation process + selection process

• The unit of selection: usually strategies (”strategy evolution”), some-
times utility functions (”preference evolution”)

1. Evolutionary stability: focus on mutations

2. Replicator dynamic: focus on selection

3. Stochastic evolutionary processes: both selection and mutations



4 Evolutionary stability

• Consider a large population of individuals who are recurrently and (uni-
formly) randomly matched in pairs to play a finite and symmetric game

— Initially, all individuals use the same pure or mixed strategy, , the

incumbent, or resident, strategy

— Suddenly, a small population share switches to another pure or

mixed strategy, , the mutant strategy

• If the residents on average fare better (in terms of payoff) than the
mutants, then  is evolutionarily stable against 

• Any strategy  is evolutionarily stable if it is evolutionarily stable

against all mutants  6= 



George R. Price
1922 - 1975John Maynard Smith

1920 - 2004
. 



4.1 Domain

• Symmetric finite two-player games in normal form

Definition 4.1 A two-player game is symmetric if 1 = 2 and 2(1 2) =

1(2 1) ∀1 2 ∈ 1 = 2.

• Write  for the common pure-strategy set, and let  = #

• Written as a payoff bimatrix (), where  = (),  = (), for

  ∈ , the game is symmetric iff  = 



Example 4.1 (Prisoners’ dilemma)

 
 3 3 0 4
 4 0 1 1

 =

Ã
3 0
4 1

!
 =

Ã
3 4
0 1

!

Symmetric since  =  .



Example 4.2 (Matching Pennies)

 
 1−1 −1 1
 −1 1 1−1

 =

Ã
1 −1
−1 1

!
 =

Ã
−1 1
1 −1

!

Here  6= . Not a symmetric game.

• Thus, matching pennies games fall outside the domain of evolutionary
stability analysis. (But if player roles are randomly assigned, with equal

chance to be in each player role, then this ”metagame” is symmetric.)



Example 4.3 (Coordination game) Payoff bimatrix:

 
 2 2 0 0
 0 0 1 1

 =  =

Ã
2 0
0 1

!

A doubly symmetric game:  =  = , an example of a potential game

[Rosenthal (1974), Monderer and Shapley (1996)]



4.2 Notation

• Write ∆ or ∆ () for the mixed-strategy simplex:

∆ = { ∈ R+ :
X
∈

 = 1}

• Write the payoff to any strategy  ∈ ∆, when used against any strategy

 ∈ ∆ as

( ) =  ·

Note that the first argument, , is own strategy, and the second argu-

ment, , the other party’s strategy

• Mixed best replies to  ∈ ∆:

∗() = {∗ ∈ ∆ : (∗ ) ≥ 
³
0 

´
∀0 ∈ ∆}



• This defines a correspondence from ∆ to itself: ∗ : ∆⇒ ∆

• Let

∆ = { ∈ ∆ :  ∈ ∗ ()}

Hence,  ∈ ∆ iff the strategy profile ( ) is a Nash equilibrium

Proposition 4.1 ∆ 6= ∅.

[Proof: Application of Kakutani’s Fixed-Point Theorem.]



4.3 Definition

Definition 4.2  ∈ ∆ is an evolutionarily stable strategy (ESS) if for each

strategy  6=  ∃ ̄ ∈ (0 1) such that, for all  ∈ (0 ̄),

 [  + (1− )]   [  + (1− )] 

• “Post-entry population mixture”:

 =  + (1− ) ∈ ∆

a convex combination of  and , a point on the straight line between

them

• Note that ̄ may depend on the particular mutant  at hand



• Let ∆ ⊂ ∆ denote the set of ESSs

• Note that an ESS has to be a best reply to itself: if  ∈ ∆ then

( ) ≤ ( ) for all  ∈ ∆

• Hence ∆ ⊂ ∆

• Note also that an ESS has to be a better reply to its alternative best
replies than they are to themselves: if  ∈ ∆,  ∈ ∗ () and
 6= , then  ( )   ( )



Proposition 4.2  ∈ ∆ if and only if for all  6= :

( ) ≤ ( )

and

( ) = ( )⇒ ( )  ( )



4.4 Examples

4.4.1 A prisoners’ dilemma

 
 3 3 0 4
 4 0 2 2

∆ = ∆ = {}



4.4.2 A coordination game

 
 2 2 0 0
 0 0 1 1

∆ =
½


1

3
+

2

3

¾

∆ = {}

The mixed NE is perfect (and even proper), but not evolutionarily stable!



4.4.3 A Hawk-dove game

 
 3 3 0 4
 4 0 −1−1

• Unique symmetric NE: randomize uniformly, ∗ = (12 12) and

∆ = {∗}

• Hence ∆ ⊆ {∗}, and ∗ an ESS iff

(∗ )  ( ) ∀ 6= ∗



• Payoff difference (∗ )− ( ):

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.1

0.2

0.3

0.4

0.5

0.6

y1

payoff difference



• Some games have no ESS. For instance, when all payoffs are the same.
But also in more interesting games such as

Example 4.4 (Rock-scissors-paper) Rock beats Scissors, Scissors beat Pa-

per, and Paper beats Rock:

 =

⎛⎜⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎟⎠

Unique Nash equilibrium: ∗ = (13 13 13). Hence, ∆ = {∗}. All
pure strategies are best replies and do just as well against themselves as

∗ does against them: ∆ = ∅. However, ∗ is neutrally stable, in the
sense that it meets the definition with weak inequality.



4.5 Local superiority

• We note that an interior ESS necessarily earns a higher payoff against
all mutants than these earn against themselves

• A form of ”global superiority”

Definition 4.3  ∈ ∆ is locally superior if it has a neighborhood  such

that ( )  ( ) for all  6=  in  .

Proposition 4.3 (Hofbauer, Schuster & Sigmund, 1979)  ∈ ∆ if and

only if  is locally superior.

• This is important for Darwin’s “gradualism” and for the replicator dy-
namics



4.6 Uniform invasion barrier

• Each ESS has a uniform invasion barrier :

Proposition 4.4  ∈ ∆ is an ESS ⇒ ∃ ̄ ∈ (0 1) such that for all  6= 

and  ∈ (0 ̄):

 [  + (1− )]   [  + (1− )] 

• This is important because in a finite population, say of size  , the

smallest mutant population share  is 1



4.7 Perfection

Definition 4.4 (Selten, 1975) A perfect equilibrium of any finite normal-

form game is any Nash equilibrium that is the limit of -perfect equilibria,

as  ↓ 0, where -perfection requires that all pure strategies are used and
non-optimal pure strategies have probabilities ≤ .

Proposition 4.5  ∈ ∆ ⇒ ( ) is a perfect equilibrium.

Lemma: Every ESS is undominated (that is, not weakly dominated by any

pure or mixed strategy).



5 The replicator dynamic

[Taylor and Jonker, 1978]

• Domain of analysis the same as for ESS: finite and symmetric two-
player games

• However, now a mixed strategy is interpreted as a population state in
a population where all individuals only use pure strategies when called

to play (like in Nash’s mass-action interpretation)



Heuristically:

1. A population of individuals who are recurrently and (uniformly) ran-

domly matched in pairs to play the game

2. Individuals use only pure strategies

3. A mixed strategy is now interpreted as a population state, a vector of

populations shares

4. Population shares change, depending on the current average payoff to

each pure strategy

5. The changes are described by a system of ordinary differential equations



Formally:

• Again a large (continuum) population playing a symmetric finite game

• But now each individual always plays a pure strategy

• At each time  ∈ R, and for each  ∈ , let () be the population

share of -strategists (individuals who use pure strategy )

• Population state: () = (1()  ()) ∈ ∆



• Expected payoff to pure strategy  at a random match (with 1 ∈ ∆

denoting the  unit vector):

(1 ) = 1 ·

• Population average payoff :

( ) =
X
∈

(1 )



The replicator dynamic:

̇ = [(1 )− ( )] ·  ∀ ∈ 

• Growth rate of positive population shares:
̇

= (1 )− ( )

• Better (worse) than-average strategies grow (decline) and best replies
have the highest growth rate



5.1 Solving the replicator dynamic

• Polynomial vector field

() = [(1 )− ( )]

• Picard-Lindelöf Theorem: ∃! (global) solution  : R×∆→ ∆

through any initial state  ∈ ∆

• Here  =  ( ) is the population state at time  if the initial state

was 



Dynamic stability concepts

• A population state  is Lyapunov stable if small perturbations does not
initiate a movement away from . [Formally: for every neighborhood

 of  there should exist a sub-neighborhood  ⊂  of  such that

if  ∈  then  ( ) ∈  for all   0.]

• A population state is asymptotically stable if it is Lyapunov stable and,
moreover, the population returns asymptotically (over time) towards

 after any sufficiently small perturbation. [Formally: in addition to

Lyapunov stability,  should have a neighborhood  such that  ∈
⇒  ( )→  as → +∞.]

• Consider the replicator dynamic in PD, CO, HD, RSP!



5.2 Connection to ESS

Proposition 5.1 If  ∈ ∆, then  is an asymptotically stable population

state in the replicator dynamic.

• The converse holds for 2× 2 games, but not in general

• Counter-example in class

Proposition 5.2 If  ∈ ∆ is asymptotically stable in the replicator dynamic,

then ( ) is a perfect equilibrium.



5.3 Connections to non-cooperative solutions

• Every  ∈ ∆ is stationary, but not necessarily stable, in the repli-

cator dynamic. Examples!

Proposition 5.3 (a)  ∈ ∆ Lyapunov stable ⇒  ∈ ∆

(b)  ∈  (∆) ∧ lim→+∞  ( ) = ∗ ⇒ ∗ ∈ ∆

(c)  ∈  (∆) and  ∈  strictly dominated ⇒ lim→+∞  ( 
) = 0

• Note that (c) does not presume that the solution trajectory converges,
and that it can be strengthened to all non-rationalizable pure strategies

 ∈ 



Hence, it is as if in the long run

CK[rationality+game]

holds (at least approximately)!


