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1 Multi-population selection dynamics

e The replicator dynamic readily generalizes to arbitrary finite n-player
games

e Domain now: finite normal-form games G = (I, S, u)
— I ={1,..,n} the set of player roles
— S = X;¢1S; the set of pure-strategy profiles, s = (s1, S2, .-, Sn)
— u : S — R" the combined payoff function, u; (s) € R being the

payoff to the individual in player role 2 € [

e A continuum " player population” of individuals for each player role,
and all individuals play pure strategies



o Let A (S;) be the mixed-strategy simplex for player role i

e Let [1(S) be the polyhedron of mixed-strategy profiles,

L1(S) = XierA(S))

e Extend u from S to [J(S) in the usual way, so that u; (x) is player i's
expected payoff when mixed-strategy profile x = (z1, .., zn) is played



1.1 Examples

1. Taylor (1979):
Ty = [ (Lin, x—;) —ui(x)] -z, Vi€ I,he€S;

(a) The growth rate of the subpopulation of h-strategists within player
population ¢ equals the absolute payoff advantage of its strategy:

gin () = (L, ) — ui(x)



2. Maynard-Smith (1982) suggested instead population growth rates based
on relative payoff advantage (assuming u;(x) > 0 for all ¢ and x):

iy = [uz’(lz’h: T_;)

ui(z)

]

willin, i) 4

gin (x) = (1)



1.2 Two-player games

Example 1.1 (Coordination) In a 2 x 2-coordination game each strict equi-
librium is asymptotically stable and the mixed equilibrium is unstable:
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Example 1.2 (Hawk-Dove) Again the interior NE is unstable while both
strict equilibria are asymptotically stable. The long-run outcome is again
“history dependent”. Generic polarization between player. Explain the dif-
ference from the single-population dynamics!
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Example 1.3 (Entry-deterrence) Unique SPE but infinitely many other NE.

Extensive form:

(1,3) (2,2) (0,0

Normal form:

A1
E 2

o



Solution orbits of the Taylor replicator dynamic:
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2 General selection dynamics

e Arbitrary finite games G = (I, S, u)

e Generalize the dynamics to allow for a wide range of imitation behaviors

and social learning:
Tih = 9in (T) Tip

where g is regular (Lipschitz continuous and z; - g; (x) = 0 for all 7)



Definition 2.1 A growth-rate function g is payoff monotonic if

wi(Lin, —3) > ui(Lig, x—;) = gin(z) > gijn(x)

Definition 2.2 A growth-rate function g is payoff positive if

wi(Lin, x—;) > ui(x) = gin(z) >0
wi(Lip, v—;) < ui(xz) = gip(x) <O



e For any mixed-strategy profile x and any player ¢, let
B;(z) = {h € S; : ui(1;p, v—;) > ui(x)}

— these are the pure strategies that yield payoffs above average

Definition 2.3 A growth-rate function g is weakly payoff-positive if:

Bi(x) # @ = g;n(x) > 0 for some h € B;(x)



Proposition 2.1 (Weibull, 1995) For any regular weakly payoff-positive dy-

namic:
(a) © € O Lyapunov stable = x € ONE

b) z° € int (L) ANlimp 100 & (2°,t) = 2% = ot e ONE
_I_

e Property (c) of the single-population replicator dynamics in symmetric
two-player games can be showed to hold for arbitrary finite games if
the growth rate has a certain monotonicity property with respect to

payoffs:



Definition 2.4 (Hofbauer and Weibull, 1996) A growth-rate function g is
convex monotonic if:

wi(yi, x—5) > wi(Lin, x—;) = y;-g;i(x) > gin(x)

Proposition 2.2 (Hofbauer and Weibull, 1996) For any regular convex-monotonic
selection dynamic: if x° € int (1) and k € S; is iteratively strictly domi-
nated for player i, then

: . 0y _
t—ll—injoo ik (t,2°) =0



Example 2.1 (outside-option game)

(3,1) (0,0)  (0,0) (1,3)

Three subgame-perfect equilibria, but only one, s* = (Ra, A), is compatible
with “forward-induction”.

The purely reduced normal form:



3 Stochastic evolution in finite populations

e We recall that any evolutionary process has two parts: mutation (cre-
ation of varieties) and selection

e However, all the above dynamics are pure selection dynamics. No
mutations occur. Robustness against mutations was studied by con-
sidering dynamic stability (Lyapunov and asymptotic).

e Moreover, the above dynamics are all deterministic and treat each
player population as a continuum.

e What can be said if the player-populations are finite and subject to
perpetually occurring random mutations alongside selection?

e T his is the research task we now tackle



3.1 Stochastic population processes

[Benaim & Weibull, 2003]

e Consider any finite n-player game

e For each player role ¢ € I there is a player population of constant and
finite size NV

e Individuals always play pure strategies (just as in the deterministic
selection dynamics and in Nash's mass-action interpretation)

e A individual in player population 7 who plays a pure strategy h € S;
will be called an h-strategist



e At discrete times t = 0,46,2,34,..., for § = 1/N, one individual is
randomly drawn for "strategy review"

e Equal probability for all individuals in the whole population to be drawn

(i.i.d.)

e For each individual, the average time between two successive opportu-
nities for strategy review is independent of NV



Definition 3.1 A population state is a mixed-strategy profile x = (x1, ..., Tn) €
[1(S) where each mixed strategy x; € A(S;) is such that Nx;;, is a non-
negative integer. Denote the (finite) set of population states ©  [O(S).

Definition 3.2 At timest € DV = {0,1/N,2/N, ...}, let the vector XV (t) =
(X N@), ..., XY (t)) e ©N be the current population shares of h-strategists,
for all pure strategies h € S; and all player populations : € I.

e We analyze population processes <XN(t)> that are (time homo-

te DN
geneous) Markov chains with transition probabilities

1 1
pin(x) = Pr{ XN (¢ + ) = o+ — (Lin — L) | XV (0) ==



3.2 The mean-field equations

e The expected net increase in the population share of h-strategists in
player population 7, in population state x:

FN(z) =3 plu(@) — Y o)
kZh kZh

e Assume F'N — F as N — oo (which we will see is the case in canonical
examples)

e The mean-field equations, the flow approximation of the stochastic
process (for N large) is

xzh:F’Lh(m) ViEI,hESi,xélj(S)

Q: Are the solution to these mean-field equations " good approximations”
of the the movements of the stochastic population process?



3.3 Why care?

e Because if, for some stochastic population process, the associated
mean-field F' is of the form

Eip (z) = gin (@) z4p,
for some growth-rate function g, then we can use the game-theoretic

results for deterministic selection dynamics to obtain game-theoretic
results for stochastic populationo processes



3.3.1 Example: aspiration and imitation (or Herbert Simon meets John
Nash)

e Herbert Simon (1916-2001, pioneer in behavioral economics, coining
the term "bounded rationality”, and 1978 economics Nobel laureate)
suggested that real economic agents do not maximize, they "satisfice”
(seek to meet aspiration levels)

e Suppose individuals use the rule of thumb: “If | am dissatisfied with
the performance of my current strategy, then | will imitate a randomly

drawn individual in my own player population.” [Gale, Binmore and
Samuelson (1995), Bjornerstedt and Weibull (1996), and Binmore and
Samuelson (1997)]

e Suppose that the aspiration levels within each player population
are statistically independent and uniformly distributed on an interval
[a;(x), b;j(x)] that contains the range of the payoff function 7,



Then

Ly (Lip, 7—5) — ui()
B = @) —a@)

Lih

If a;(x) = «; and b;(x) = [; for some «; < [3;, then this is but
a player-specific time rescaling of the Taylor (1979) multi-population
replicator dynamic.

If instead a;(z) = o;u;(x) and b;(z) = B,u;(x) for some «; < B, (and
all payoffs are positive), then we obtain a player-specific time rescaling
of the Maynard Smith (1982) multi-population replicator dynamics.

If the mean field is a good approximation of these stochastic processes,
then we have established that "Herbert Simon asymptotically meets
John Nash”: If a mean-field solution converges from some interior
initial state, then the limit point is a Nash equilibrium, and then also



the stochastic population process will probabilistically converge to Nash
equilibrium (in a precise sense)

3.4 The key lemma

e The answer to the question Q raised before is a qualified "yes". It
hinges on the fact that the stochastic evolutionary process is exponen-
tially well approximated by its mean field over bounded time intervals:

Proposition 3.1 (Benaim & Weibull, 2003) For every T' > 0 there exist
constants ¢, K > 0 such that for all ¢ > 0 and all N large enough:

2
P xN(t) —¢(t,2°))| >e| XN(0) = zo| < Ke =N
" lomax, [[IX7(E) = &(t:a0)]| 2 e | XT(0) = 20| < Ke



e In other words: the probability for any e-deviation tends exponentially
to zero as population size N — oo

e Using this, also asymptotic results can be obtain (see paper)



4 Social learning and stochastic stability

e Models of best replies to "recent history of play” with perpetual per-
turbations:

— Young P. (1993a): “The evolution of conventions”, Econometrica

— Young P. (1993b): “An evolutionary model of bargaining”, Journal
of Economic Theory

— Hurkens S. (1995): “Learning by forgetful players”, Games and
Economic Behavior

— Young (1998): Individual Strategy and Social Structure. Princeton
University Press.



4.1 Young’'s model in a nutshell

e Arbitrary finite game G = (I, S, u)
e For each player role 2 a finite population of size N

e Eachround t =0,1,2,.... one individual is randomly drawn from each
player population, and each of these n individuals draws a sample of
size k (without replacement) from the m > k last rounds of play, and
these individuals play the game (see below)

e A state of this Markov chain is the m-history of recent play; the m
most recent pure-strategy profiles

e A successor history, after any history, is obtained by adding the new
strategy profile and deleting the oldest



e The unperturbed process: each individual called to play always plays
a best reply against its k-sample from the current m-history

- statistically independent samples across individuals in the same round
and across periods

e The perturbed process:

with probability 1 — ¢: an individual called to play plays a best reply
against its k-sample from the current m-history

with probability : the individual instead draws a pure strategy at
random (uniformly)

e The perturbed process is irreducible (it can with positive probability
get from any given state to any other given state in a finite number of
rounds)



If k/m is sufficiently small and m sufficiently large, then the perturbed
process is also aperiodic (there exist no cycles that it cannot leave)

A classical theorem in the theory of Markov chains is that any irre-
ducible and aperiodic Markov chain with finite state space has a unique
invariant probability distribution over its state space, a distribution to
which it converges from any initial state

Applied to the present class of perturbed Markov chains: There exists
a unique invariant probability distribution u© over m—histories of play,
to which the process converges from any initial m-history.

Next step: Take the limit of u® as the probability for mistakes tends
to zero, € — 0, this leads to u® — u*



e The so obtained limiting distribution ™ is an invariant distribution
under the unperturbed process (which may admit multiple invariant
distributions)

e Any strategy profile that appears in a history in the support of the
limiting distribution u*is called stochastically stable

e If a game has a unique stochastically stable strategy profile that repeats
itself in every period, then it is a social convention



Proposition 4.1 (Young, 1993) Let G be a 2 X 2-coordination game. If
k/m < 1/2 then the unperturbed process (¢ = 0) converges from any
initial state with probability one to one of the two strict equilibria. If
k/m < 1/2 and m is sufficiently large, then the perturbed process (¢ > 0)
has a unique invariant distribution and, in the limit as € — 0, this places
probability one on (repeated play of) the risk dominant equilibrium.

e Risk dominance (Harsanyi & Selten, 1988)

e The mixed NE, although perfect, is never selected (in line with ESS

and the replicator dynamic)



Example 4.1 Consider the coordination game
a b

a 4,4 0,2

b 2,0 3,3

The strict equilibrium (a,a) Pareto dominates the strict equilibrium (b, b),
but (b,b) risk dominates (a, a).



e A generalization to arbitrary finite games:

Definition 4.1 (Young, 1998) A finite normal-form game G = (I, S, u)
has non-degenerate best replies (NDBR) if, every pure strategy is either
not a best reply to any mixed-strategy profile, or it is a best reply to a set
of mixed-strategy profiles with non non-empty interior.

e This is a generic property of finite normal-form games.



e For each player role ¢ and any nonempty 7T; C S;, let T' = X;cNT1; and
let [] (T) = X;crA (Tz)

e Such block may be " closed under rational behavior” in a precise sense:

Definition 4.2 (Basu and Weibull, 1991) 7" is a CURB set if

plEMIcT

e Examples: the entry-deterrence game, the outside-option game, coor-
dination games. They all have (unique) social conventions.



Theorem 4.2 (Young, 1998) Let G be a finite game with the NDBR prop-
erty. The unperturbed process converges with probability one to a minimal
CURB set if k/m is sufficiently small. In the limit as ¢ — 0, the limit
invariant distribution p©* places unit probability on the strategy profiles on
the minimal CURB set that have minimal stochastic potential.

e Hence, set-valued conventions exist and can be mathematically identi-
fied



