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1 Multi-population selection dynamics

• The replicator dynamic readily generalizes to arbitrary finite -player
games

• Domain now: finite normal-form games  = h  i

—  = {1  } the set of player roles

—  = ×∈ the set of pure-strategy profiles,  = (1 2  )

—  :  → R the combined payoff function,  () ∈ R being the

payoff to the individual in player role  ∈ 

• A continuum ”player population” of individuals for each player role,

and all individuals play pure strategies



• Let ∆ () be the mixed-strategy simplex for player role 

• Let ¤ () be the polyhedron of mixed-strategy profiles,

¤ () = ×∈∆ ()

• Extend  from  to ¤ () in the usual way, so that  () is player ’s
expected payoff when mixed-strategy profile  = (1  ) is played



1.1 Examples

1. Taylor (1979):

̇ = [(1 −)− ()] ·  ∀ ∈   ∈ 

(a) The growth rate of the subpopulation of -strategists within player

population  equals the absolute payoff advantage of its strategy:

 () = (1 −)− ()



2. Maynard-Smith (1982) suggested instead population growth rates based

on relative payoff advantage (assuming ()  0 for all  and ):

̇ =

"
(1 −)

()
− 1

#
· 

 () =
(1 −)

()
− 1



1.2 Two-player games

Example 1.1 (Coordination) In a 2×2-coordination game each strict equi-
librium is asymptotically stable and the mixed equilibrium is unstable:
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Example 1.2 (Hawk-Dove) Again the interior NE is unstable while both

strict equilibria are asymptotically stable. The long-run outcome is again

“history dependent”. Generic polarization between player. Explain the dif-

ference from the single-population dynamics!
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Example 1.3 (Entry-deterrence) Unique SPE but infinitely many other NE.

Extensive form:

C F

(1,3) (0,0)(2,2)

A E

1

2

Normal form:

 
 1 3 1 3
 2 2 0 0



Solution orbits of the Taylor replicator dynamic:
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2 General selection dynamics

• Arbitrary finite games  = h  i

• Generalize the dynamics to allow for a wide range of imitation behaviors
and social learning:

̇ =  ()

where  is regular (Lipschitz continuous and  ·  () ≡ 0 for all )



Definition 2.1 A growth-rate function  is payoff monotonic if

(1 −)  (1 −) ⇒ ()  ()

Definition 2.2 A growth-rate function  is payoff positive if

(1 −)  () ⇒ ()  0
(1 −)  () ⇒ ()  0



• For any mixed-strategy profile  and any player , let

 () = { ∈  : (1 −)  ()}

— these are the pure strategies that yield payoffs above average

Definition 2.3 A growth-rate function  is weakly payoff-positive if:

() 6= ∅ ⇒ ()  0 for some  ∈ ()



Proposition 2.1 (Weibull, 1995) For any regular weakly payoff-positive dy-

namic:

(a)  ∈ ¤ Lyapunov stable ⇒  ∈ ¤

(b)  ∈  (¤) ∧ lim→+∞  ( ) = ∗ ⇒ ∗ ∈ ¤

• Property (c) of the single-population replicator dynamics in symmetric
two-player games can be showed to hold for arbitrary finite games if

the growth rate has a certain monotonicity property with respect to

payoffs:



Definition 2.4 (Hofbauer and Weibull, 1996) A growth-rate function  is

convex monotonic if:

( −)  (1 −) ⇒  ·  ()  ()

Proposition 2.2 (Hofbauer and Weibull, 1996) For any regular convex-monotonic

selection dynamic: if  ∈  (¤) and  ∈  is iteratively strictly domi-

nated for player , then

lim
→+∞

 ( 
) = 0



Example 2.1 (outside-option game)

1

L R

a a bb

(3,1) (0,0) (1,3)(0,0)

(2,v)
A B

2

1

Three subgame-perfect equilibria, but only one, ∗ = (), is compatible
with “forward-induction”.

The purely reduced normal form:

 
 2  2 
 3 1 0 0
 0 0 1 3



3 Stochastic evolution in finite populations

• We recall that any evolutionary process has two parts: mutation (cre-
ation of varieties) and selection

• However, all the above dynamics are pure selection dynamics. No
mutations occur. Robustness against mutations was studied by con-
sidering dynamic stability (Lyapunov and asymptotic).

• Moreover, the above dynamics are all deterministic and treat each
player population as a continuum.

• What can be said if the player-populations are finite and subject to
perpetually occurring random mutations alongside selection?

• This is the research task we now tackle



3.1 Stochastic population processes

[Benäım & Weibull, 2003]

• Consider any finite -player game

• For each player role  ∈  there is a player population of constant and

finite size 

• Individuals always play pure strategies (just as in the deterministic
selection dynamics and in Nash’s mass-action interpretation)

• A individual in player population  who plays a pure strategy  ∈ 
will be called an -strategist



• At discrete times  = 0  2 3 , for  = 1 , one individual is

randomly drawn for ”strategy review”

• Equal probability for all individuals in the whole population to be drawn
(i.i.d.)

• For each individual, the average time between two successive opportu-
nities for strategy review is independent of 



Definition 3.1 A population state is a mixed-strategy profile  = (1  ) ∈
¤ () where each mixed strategy  ∈ ∆ () is such that  is a non-

negative integer. Denote the (finite) set of population states Θ ⊂ ¤ ().

Definition 3.2 At times  ∈  = {0 1 2 }, let the vector() =³

1 () 


 ()

´
∈ Θ be the current population shares of -strategists,

for all pure strategies  ∈  and all player populations  ∈ .

• We analyze population processes
D
()

E
∈ that are (time homo-

geneous) Markov chains with transition probabilities

() = Pr
∙

 (+

1


) =  +

1


(1 − 1) | () = 

¸



3.2 The mean-field equations

• The expected net increase in the population share of -strategists in
player population , in population state :


 () =

X
 6=

()−
X
 6=

()

• Assume  →  as  →∞ (which we will see is the case in canonical

examples)

• The mean-field equations, the flow approximation of the stochastic

process (for  large) is

̇ = () ∀ ∈ ,  ∈ ,  ∈ ¤ ()

Q: Are the solution to these mean-field equations ”good approximations”
of the the movements of the stochastic population process?



3.3 Why care?

• Because if, for some stochastic population process, the associated
mean-field  is of the form

 () =  ()

for some growth-rate function , then we can use the game-theoretic

results for deterministic selection dynamics to obtain game-theoretic

results for stochastic populationo processes



3.3.1 Example: aspiration and imitation (or Herbert Simon meets John

Nash)

• Herbert Simon (1916-2001, pioneer in behavioral economics, coining
the term ”bounded rationality”, and 1978 economics Nobel laureate)

suggested that real economic agents do not maximize, they ”satisfice”

(seek to meet aspiration levels)

• Suppose individuals use the rule of thumb: “If I am dissatisfied with

the performance of my current strategy, then I will imitate a randomly

drawn individual in my own player population.” [Gale, Binmore and

Samuelson (1995), Björnerstedt and Weibull (1996), and Binmore and

Samuelson (1997)]

• Suppose that the aspiration levels within each player population 

are statistically independent and uniformly distributed on an interval

[() ()] that contains the range of the payoff function 



• Then

() =
1



 (1 −)− ()

()− ()
·  .

• If () ≡  and () ≡  for some   , then this is but

a player-specific time rescaling of the Taylor (1979) multi-population

replicator dynamic.

• If instead () ≡ () and () ≡ () for some    (and

all payoffs are positive), then we obtain a player-specific time rescaling

of the Maynard Smith (1982) multi-population replicator dynamics.

• If the mean field is a good approximation of these stochastic processes,
then we have established that ”Herbert Simon asymptotically meets

John Nash”: If a mean-field solution converges from some interior

initial state, then the limit point is a Nash equilibrium, and then also



the stochastic population process will probabilistically converge to Nash

equilibrium (in a precise sense)

3.4 The key lemma

• The answer to the question Q raised before is a qualified ”yes”. It

hinges on the fact that the stochastic evolutionary process is exponen-

tially well approximated by its mean field over bounded time intervals:

Proposition 3.1 (Benäım & Weibull, 2003) For every   0 there exist

constants   0 such that for all   0 and all  large enough:

Pr

"
max
0≤≤

||()− ( )|| ≥  | (0) = 0

#
≤ −

2



• In other words: the probability for any -deviation tends exponentially
to zero as population size  →∞

• Using this, also asymptotic results can be obtain (see paper)



4 Social learning and stochastic stability

• Models of best replies to ”recent history of play” with perpetual per-
turbations:

— Young P. (1993a): “The evolution of conventions”, Econometrica

— Young P. (1993b): “An evolutionary model of bargaining”, Journal

of Economic Theory

— Hurkens S. (1995): “Learning by forgetful players”, Games and

Economic Behavior

— Young (1998): Individual Strategy and Social Structure. Princeton

University Press.



4.1 Young’s model in a nutshell

• Arbitrary finite game  = h  i

• For each player role  a finite population of size 

• Each round  = 0 1 2  one individual is randomly drawn from each

player population, and each of these  individuals draws a sample of

size  (without replacement) from the  ≥  last rounds of play, and

these individuals play the game (see below)

• A state of this Markov chain is the -history of recent play; the 

most recent pure-strategy profiles

• A successor history, after any history, is obtained by adding the new
strategy profile and deleting the oldest



• The unperturbed process: each individual called to play always plays
a best reply against its -sample from the current -history

- statistically independent samples across individuals in the same round

and across periods

• The perturbed process:

with probability 1 − : an individual called to play plays a best reply

against its -sample from the current -history

with probability : the individual instead draws a pure strategy at

random (uniformly)

• The perturbed process is irreducible (it can with positive probability
get from any given state to any other given state in a finite number of

rounds)



• If  is sufficiently small and  sufficiently large, then the perturbed

process is also aperiodic (there exist no cycles that it cannot leave)

• A classical theorem in the theory of Markov chains is that any irre-

ducible and aperiodic Markov chain with finite state space has a unique

invariant probability distribution over its state space, a distribution to

which it converges from any initial state

• Applied to the present class of perturbed Markov chains: There exists
a unique invariant probability distribution  over −histories of play,
to which the process converges from any initial -history.

• Next step: Take the limit of  as the probability for mistakes tends
to zero, → 0, this leads to → ∗



• The so obtained limiting distribution ∗ is an invariant distribution
under the unperturbed process (which may admit multiple invariant

distributions)

• Any strategy profile that appears in a history in the support of the
limiting distribution ∗is called stochastically stable

• If a game has a unique stochastically stable strategy profile that repeats
itself in every period, then it is a social convention



Proposition 4.1 (Young, 1993) Let  be a 2 × 2-coordination game. If
 ≤ 12 then the unperturbed process ( = 0) converges from any

initial state with probability one to one of the two strict equilibria. If

 ≤ 12 and  is sufficiently large, then the perturbed process (  0)

has a unique invariant distribution and, in the limit as  → 0, this places

probability one on (repeated play of) the risk dominant equilibrium.

• Risk dominance (Harsanyi & Selten, 1988)

• The mixed NE, although perfect, is never selected (in line with ESS
and the replicator dynamic)



Example 4.1 Consider the coordination game

 
 4 4 0 2
 2 0 3 3

The strict equilibrium ( ) Pareto dominates the strict equilibrium ( ),

but ( ) risk dominates ( ).



• A generalization to arbitrary finite games:

Definition 4.1 (Young, 1998) A finite normal-form game  = (  )

has non-degenerate best replies (NDBR) if, every pure strategy is either

not a best reply to any mixed-strategy profile, or it is a best reply to a set

of mixed-strategy profiles with non non-empty interior.

• This is a generic property of finite normal-form games.



• For each player role  and any nonempty  ⊆ , let  = ×∈ and
let ¤ ( ) = ×∈∆ ().

• Such block may be ”closed under rational behavior” in a precise sense:

Definition 4.2 (Basu and Weibull, 1991)  is a CURB set if

 [¤ ( )] ⊆ 

• Examples: the entry-deterrence game, the outside-option game, coor-
dination games. They all have (unique) social conventions.



Theorem 4.2 (Young, 1998) Let  be a finite game with the NDBR prop-

erty. The unperturbed process converges with probability one to a minimal

CURB set if  is sufficiently small. In the limit as  → 0, the limit

invariant distribution ∗ places unit probability on the strategy profiles on
the minimal CURB set that have minimal stochastic potential.

• Hence, set-valued conventions exist and can be mathematically identi-
fied


