Microeconomic Theory I: Choice Under Uncertainty

Parikshit Ghosh

Delhi School of Economics

September 8, 2014

Delhi School of Economics

The Axiomatic Approach ●00 ○00000	Critique 00000 00	Applications 0000
Definitions and Axioms		

Lotteries

- Set of outcomes: $\{a_1, a_2, \ldots, a_n\}$.
- A gamble/lottery is a probability distribution over outcomes: g = (p₁ ∘ a₁, p₂ ∘ a₂,..., p_n ∘ a_n).
- p_i is the probabaility of outcome *i*.
- ► Sure outcomes: $(0 \circ a_1, \ldots, 1 \circ a_i, \ldots, 0 \circ a_n) = a_i$.
- ► Compound lotteries are probability distributions over lotteries: $(q_1 \circ g_1, q_2 \circ g_2, ..., q_m \circ g_m).$
- $(S_G) S$ is the set of all (simple) lotteries.
- \blacktriangleright \gtrsim is a preference relation defined over S.

Applications 0000

The von Neumann-Morgenstern Axioms

- Axiom 1 (Completeness): For all g, g' ∈ G, either g ≿ g' or g' ≿ g (or both).
- ▶ Axiom 2 (Transitivity): For all $g, g', g'' \in G$, if $g \succeq g'$ and $g' \succeq g''$, then $g \succeq g''$.
- ▶ Axiom 3 (Continuity): For any $g \in G$, there exists $\alpha \in [0, 1]$ such that

$$g \sim (\alpha \circ a_1, \dots, (1-lpha) \circ a_n)$$

Image: A math a math

The von Neumann-Morgenstern Axioms

• Axiom 4 (Monotonicity): For any $\alpha, \beta \in [0, 1]$

$$(\alpha \circ \mathsf{a}_1, (1-\alpha) \circ \mathsf{a}_n) \succsim (\beta \circ \mathsf{a}_1, (1-\beta) \circ \mathsf{a}_n) \quad \text{iff} \ \alpha \geq \beta$$

- ▶ Axiom 5 (Substitution/Independence): If $g = (p_1 \circ g_1, ..., p_k \circ g_k), h = (p_1 \circ h_1, ..., p_k \circ h_k)$ and $g_i \sim h_i$ for all i = 1, 2, ..., k, then $g \sim h$.
- Axiom 6 (Reduction to simple lotteries): For any g ∈ G, if g_S ∈ G_S is the simple lottery induced by g, then g ~ g_S.

Image: A math a math

The Expected Utility Theorem

Theorem

Suppose \succeq satisfies Axioms 1 through 6. Then there exists a function $u: G \to \mathbb{R}$ such that u(.)

(i) represents
$$\succsim$$
 , i.e. $\mathbf{g} \succsim \mathbf{g}' \Leftrightarrow u(\mathbf{g}) \geq u(\mathbf{g}')$

(ii) has the exp utility prop, i.e.
$$u(g) = \sum_{i=1}^n p_i u(a_i)$$

- The probabilities p_i are assumed to be objective (e.g. playing roulette), not subjectively assessed (e.g. stock price).
- Savage extended the theory to subjective probabilities.
- The value of a lottery is linear in the probabilities of outcomes.

Proof: Representation

▶ Proof by construction: define $u(g) \in [0, 1]$ such that

$$g \sim (u(g) \circ a_1, (1 - u(g)) \circ a_n)$$
 (continuity)

► Representation:
$$g \succeq g' \Leftrightarrow$$

 $(u(g) \circ a_1, (1 - u(g)) \circ a_n) \succeq (u(g') \circ a_1, (1 - u(g')) \circ a_n)$
(transitivity)

 $\Leftrightarrow u(g) \ge u(g')$ (monotonicity)

Delhi School of Economics

Image: A mathematical states and a mathem

The Axiomatic Approach °○○ ⊙⊙●⊙⊙⊙	Critique ooooo oo	Applications 0000
Rrepresentation Theorems		

Proof: Expected Utility Property

Expected utility property:

$$\mathsf{a}_i \sim (\mathsf{u}(\mathsf{a}_i) \circ \mathsf{a}_1, (1 - \mathsf{u}(\mathsf{a}_i)) \circ \mathsf{a}_n) \equiv \mathsf{q}_i$$

Then

$$g \sim (p_1 \circ q_1, p_2 \circ q_2, \dots, p_n \circ q_n) \text{ (substitution)}$$

$$\sim \left(\left(\sum_{i=1}^n p_i u(a_i) \right) \circ a_1, \left(1 - \sum_{i=1}^n p_i u(a_i) \right) \circ a_n \right) \text{ (axiom 6)}$$

By monotonicity

$$u(g) = \sum_{i=1}^{n} p_i u(a_i)$$

Image: A mathematical states and a mathem

Invariance to Positive Affine Transformations

Theorem

Suppose the VNM function u(.) represents \succeq over G. Then the VNM function v(.) represents \succeq if and only if there exist real numbers α and $\beta > 0$ such that

$$v(g) = lpha + eta u(g) \;\;$$
 for all $g \in G$

- As in choice under certainty, there is no unique function that represents preferences.
- Representation is more restrictive: only positive linear transformations preserve preference.

< □ > < 同 >

The Axiomatic Approach ⊙⊙⊙ ⊙⊙⊙⊖⊙	Critique ooooo oo	Applications 0000
Rrepresentation Theorems		

Proof of 'Only If' Part

Sufficiency is trivial. Proving necessity.

Let

$$\mathbf{a}_i \sim (lpha_i \circ \mathbf{a}_1, (1 - lpha_i) \circ \mathbf{a}_n)$$
 (continuity)

Since both u(.) and v(.) represent ≿ and are VNM (expected utility) functions

$$u(a_i) = \alpha_i u(a_1) + (1 - \alpha_i) u(a_n)$$

$$v(a_i) = \alpha_i v(a_1) + (1 - \alpha_i) v(a_n)$$

Solving for α_i :

$$\alpha_i = \frac{u(a_i) - u(a_n)}{u(a_1) - u(a_n)} = \frac{v(a_i) - v(a_n)}{v(a_1) - v(a_n)}$$

< 17 >

The Axiomatic Approach		
000 00000●	00000 00	0000
Rrepresentation Theorems		

Solving for
$$v(a_i)$$
:

$$v(a_{i}) = \underbrace{\frac{u(a_{1})v(a_{n}) - u(a_{n})v(a_{1})}{u(a_{1}) - u(a_{n})}}_{\alpha} + \underbrace{\left[\frac{v(a_{1}) - v(a_{n})}{u(a_{1}) - u(a_{n})}\right]}_{\beta}u(a_{i})$$

 There are two degrees of freedom while choosing the utility function.

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Allais Paradox

• Decision problem 1: which do you prefer?

```
Lottery A: 1 crore (1)
Lottery B: 5crore (.1), 1 crore (.89), 0 (.01)
```

Decision problem 2: which do you prefer?

Lottery C: 1 crore (.11), 0 (.89) Lottery D:5 crore (.1), 0 (.9)

In surveys, most people say:

$$A \succ B, D \succ C$$

Parikshit Ghosh Choice Under Uncertainty Delhi School of Economics

Image: A math a math

The Axiomatic Approach 000 000000	Critique o●ooo oo	Applications 0000
Anomalies		

What is Wrong?

- Suppose u(.) represents these preferences.
- $A \succ B$ implies

$$u(1) > .1u(5) + .89u(1) + .01u(0)$$

or $.1u(5) - .11u(1) + .01u(0) < 0$

• $D \succ C$ implies

$$.1u(5) + .9u(0) > .11u(1) + .89u(0)$$

or $.1u(5) - .11u(1) + .01u(0) > 0$

These preferences cannot be represented by a VNM function since it leads to a contradiction.

Parikshit Ghosh Choice Under Uncertainty < □ > < 同 >

The Axiomatic Approach	Critique	
000 000000	00000 00	
Anomalies		

The Ellsberg Paradox

- An urn contains 300 balls, out of which 100 are known to be red, and the remaining 200 are known to be either blue or green.
- Decision problem 1: which do you prefer?

Lottery A: Rs. 100 if Red

Lottery B: Rs. 100 if Blue

• **Decision problem 2:** which do you prefer?

Lottery C Rs. 100 if Not Red

Lottery D: Rs. 100 if Not Blue

In surveys, most people say:

$$A \succ B, C \succ D$$

< □ > < 同 >

The Axiomatic Approach 000 000000	Critique 00000 00	Applications 0000
Anomalies		

What is Wrong?

- Suppose u(.) represents these preferences, and suppose the decision maker conjectures Pr[blue] = p.
- $A \succ B$ implies

$$p<\frac{1}{3}$$

- $C \succ D$ implies $\frac{2}{3} > 1 - p \Rightarrow p > \frac{1}{3}$ • These preferences cannot be represented by any
- These preferences cannot be represented by any expected utility function (ambiguity aversion).

< □ > < 同 >

Anomalies

Non-Consequentialism: Machina's Mom

- A mother has two children but only one (indivisible) toy.
- Outcomes: b (boy gets it), g (girl gets it).
- Preference: $b \sim g$, $(0.5 \circ b, 0.5 \circ g) \succ b, g$.
- Violates monotonicity axiom.
- Why does Machina's mom strictly prefer tossing a coin?
- To guarantee equal opportunity, since she cannot ensure equal outcome.

Bayes' Rule

- ► Suppose 1% of the population is infected with swine flu virus.
- Suppose there is a test of 90% accuracy (10% chance of false positive or false negative).
- A patient tests positive. What is the probability he is actually infected?
- Bayes' Rule says Pr(infected|positive)

 $= \frac{\Pr(\inf) \Pr(\operatorname{positive}|\inf)}{\Pr(\inf) \Pr(\operatorname{positive}|\inf) + \Pr(\operatorname{uninf}) \Pr(\operatorname{positive}|\operatorname{uninf})}$ $= \frac{(.01)(.9)}{(.01)(.9) + (.99)(.1)} = \frac{1}{12}$

The small prior nullifies the effect of the large test accuracy.

Framing Effect

- Kahnemann and Tversky (1981): suppose 600 people will be subjected to a medical treatment against some deadly disease.
- Decision problem 1: which do you prefer?

Treatment A: 200 people will be saved

Treatment B: everyone saved (prob $\frac{1}{3}$) or no one saved (prob $\frac{2}{3}$)

Decision problem 2: which do you prefer?

Treatment C: 400 people will die

Treatment D: everyone dies (prob $\frac{2}{3}$) or no one dies (prob $\frac{1}{3}$)

In surveys, most people say:

$$A \succ B \ (72\%), D \succ C \ (78\%)$$

Monetary Payoffs

- Let $a_i = w_i$ (some amount of wealth).
- Expected value of a lottery: $\mathbf{E}(g) = \sum_{i=1}^{n} p_i w_i$.
- Expected utility of a lottery: $u(g) = \sum_{i=1}^{n} p_i u(w_i)$.
- Definition: u(.) exhibits
 - risk neutrality if $u(g) = u(\mathbf{E}(g))$ for all $g \in G$.
 - ▶ risk aversion if $u(g) < u(\mathbf{E}(g))$ for all $g \in G$.
 - ▶ risk loving if $u(g) > u(\mathbf{E}(g))$ for all $g \in G$.
- Certainty equivalent: C(g) is such that u(g) = u(C(g)).
- Risk premium $R(g) = \mathbf{E}(g) C(g)$.
- Risk neutrality/aversion/loving $\Rightarrow R(g) = , >, < 0.$

Image: A math a math

Optimum Purchase of Insurance

- An agent with wealth w faces a loss L with probability p.
- She has a concave (risk averse) utility function u(w).
- She can insure her wealth at a premium of p per rupee insured.
- The agent's problem is to insure an amount $x \leq w$ to solve:

$$\max_{x} pu(w - L - \rho x + x) + (1 - p)u(w - \rho x)$$

First order condition:

$$p(1-\rho)u'(w-L-\rho x+x) = (1-p)\rho u(w-\rho x)$$

•
$$x < (=)L$$
 if $\rho > (=)p$.

Zero profit condition for insurance companies:

$$(1-p)\rho - p(1-\rho) = 0 \Rightarrow p = \rho$$

Parikshit Ghosh Choice Under Uncertainty Delhi School of Economics

Degree of Risk Aversion

• The Arrow-Pratt measure of absolute risk aversion:

$$r(w) = -\frac{u''(w)}{u'(w)}$$

- Interpretation: a more risk averse agent will accept a strictly smaller set of lotteries.
- ► Consider lotteries of the form (p ∘ x₁, (1 − p) ∘ x₂). Let x₂(x₁) be the boundary of the acceptable set.
- By definition:

$$pu(w + x_1) + (1 - p)u(w + x_2(x_1)) \equiv u(w)$$

Differentiating with respect to x₂ at (0,0):

$$pu'(w) + (1-p)u'(w)x'_{2}(0) = 0 \Rightarrow x'_{2}(0) = -\frac{p}{1-p}$$

Degree of Risk Aversion

- The more curved the boundary at (0,0), the smaller is the acceptance set.
- Differentiating a second time at (0,0):

$$pu''(w) + (1-p)u''(w) \left[x'_{2}(0)\right]^{2} + (1-p)u'(w)x''_{2}(0) = 0$$

• Since
$$x'_2(0) = -\frac{p}{1-p}$$

$$x_2''(0) = \frac{p}{(1-p)^2} \left[-\frac{u''(w)}{u'(w)} \right]$$

• Agents with larger r(w) have smaller acceptance sets.