UNIVERSITY OF DELHI
DELHI SCHOOL OF ECONOMICS
DEPARTMENT OF ECONOMICS

Minutes of Meeting

Subject : B.A. (Hons) Economics – Sixth Semester (2014)
Course : 26 - Applied Econometrics
Date of Meeting : 10th December 2014
Venue : Department of Economics, Delhi School of Economics,
University of Delhi
Chair : Prof. Pami Dua

Attended by:

1. Lokendra Kumawat Ramjas College
2. Padma Suresh M Sri Venkateshwara College
3. Vandana Tulsyan Dyal Singh College
4. Swapan Chavraborty Shyam Lal College(E)
5. Pawan Rohilla Ramjas College
6. Simin Akhter Zakir Husain College
7. Hena Oak Miranda House
8. Neelam Singh LSR

1. It was decided that for the academic session 2014-15, the main textbook would continue to be Basic Econometrics by Gujarati, Porter and Gunasekar(2012) supplemented by Wooldridge(2009) for selected topics. For applications using software, Econometrics by Example by Gujarati(2011) would be the recommended text.

2. It was also decided that in Section II.1 i.e. The Matrix Approach to Linear Regression Model, the entire Appendix C in Gujarati and Porter(2012), 5th edition (International) would be included in the reading list.

3. Teachers are advised to go through the following textbook for potential introduction in the Applied Econometrics course in the BA(Hons) Semester batch of 2016-17:

In addition, it was felt that Wooldridge (2009), which is used currently as the reading for topics III.b and V, could be used for a few other topics for the batch of 2016-17. Teachers are advised to go through this book for the topics which are currently taught from other books.
4. The Applied Econometrics course must orient students to do a research project and get hands on experience with appropriate software (GRETL/ EViews/ Stata/EXCEL). This would form part of the Internal Assessment.

The details of the Syllabus, Topic-wise Reading list, recommended text books and Student Assessment summary are given below.

SYLLABUS

I. Stages in Empirical Econometric Research

II. The Linear Regression Model: Estimation, Specification and Diagnostic Testing
 ii. Review of Functional forms and Qualitative explanatory variable regression models
 iii. Regression Diagnostics
 a. Detection of and remedial measures for Multicollinearity, Autocorrelation and Heteroscedasticity.
 b. Model Selection and Diagnostic Testing
 1. Tests of Specification errors: Detecting the presence of unnecessary variables, omitted variables and incorrect functional form (Ramsey RESET and Lagrange Multiplier Test for Adding Variables)
 2. Errors of measurement: Consequences and remedial measures
 3. Model Selection Criteria: R^2 and Adjusted R^2 criteria, Akaike's Information Criterion and Schwarz's Information Criterion.
 4. Additional topics in modeling (Outliers, Leverage, Influence; Recursive least Squares; Chow's Prediction Failure Test; Missing Data)
 5. Non-normal errors and stochastic regressors

III. Advanced Topics in Regression Analysis
 i. Dynamic Econometric Models
 b. Estimation of Autoregressive Models
 ii. Instrumental Variable Estimation
 a. Omitted variables in a simple regression model
b. Measurement errors

IV. Panel Data Models and Estimation techniques

V. Introduction to Econometric Software (GRETL/ EViews/ Stata/ EXCEL: ANY ONE)

i. Generation of data sets and data transformation; data analysis (Graphs and Plots, Summary Statistics, Correlation Matrix etc.)

ii. Running an OLS regression; Testing for Linear Restrictions and Parameter Stability

iii. Regression Diagnostics: Collinearity, Autocorrelation, Heteroscedasticity, Normality of residuals

iv. Estimation of Other Linear Models: Weighted Least squares, Cochran-Orcutt/ Hildreth-Lu/ Prais-Winsten etc.

v. Model Selection Criteria (AIC, SIC) and Tests (Adding and Omitting Variables, Non-Linearities: Squares, Cubes and Logs, Ramsey’s RESET test)

Topic-wise reading list

<table>
<thead>
<tr>
<th>S.No.</th>
<th>TOPIC</th>
<th>REFERENCES FROM RECOMMENDED TEXT BOOKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.ii</td>
<td>Review of Functional forms and Qualitative explanatory variable regression models</td>
<td>Chapter 2 ‘Functional Forms of Regression Models’ and Chapter 3 ‘Qualitative Explanatory Variables Regression Models in Gujarati, Econometrics by Example.</td>
</tr>
<tr>
<td>II.iii.a</td>
<td>Regression Diagnostics: Detection of, and remedial measures for Multicollinearity, Autocorrelation Heteroscedasticity</td>
<td>Chapter 4 ‘Regression Diagnostic I: Multicollinearity’, Chapter 5 ‘Regression Diagnostic II: Heteroscedasticity’ and Chapter 6 ‘Regression Diagnostic III: Autocorrelation in Gujarati, Econometrics By</td>
</tr>
<tr>
<td>II.iii.b</td>
<td>Regression Diagnostics: Model Selection</td>
<td>Example</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>III.b.</td>
<td>Advanced Topics in Regression Analysis: Instrumental Variable Estimation</td>
<td>Chapter 15 ‘Instrumental Variable Estimation and Two Stage Least Squares’, Section 15.1, 15.2 and 15.4 in Wooldridge, Econometrics</td>
</tr>
<tr>
<td>IV.</td>
<td>Panel Data Models and Estimation Techniques</td>
<td>Chapter 16 ‘Panel Data Regression Models’ in Gujarati, Porter and Gunasekar, Basic Econometrics</td>
</tr>
</tbody>
</table>

Recommended textbooks

Student Assessment Summary

Students will have to pass the end-semester exam and the total of the internal assessment and end-semester exam as per university rules to clear the paper.

The end-semester final examination will be of 75 marks. The question paper will consist of seven questions of 15 marks each from Topics I, II, III and IV only. Students will have to answer any five questions.
The software skills of the students will be tested by the teachers during internal assessment and not in the end-semester final exam. The paper setting committee should take a note of this.

Internal assessment will be of 25 marks, divided further as follows:

1. Attendance: 5 marks
2. Class Test/ Assignment: 10 marks
3. Empirical project using the econometric software learnt: 10 marks. (Projects can be done in groups of 2 or 3)