Lecture 4: The Revelation Principle

Ram Singh

Department of Economics

January 14, 2015

Ram Singh (Delhi School of Economics)

Revelation Principle

January 14, 2015 1 / 16

Contracts under Adverse Selection I

Examples of Contracts:

C1 :	$(q_1^*, \theta_1 u(q_1^*)), (q_2^*, \theta_2 u(q_2^*))$
C2 :	$(0,0), (q_2^*, \theta_2 u(q_2^*))$
C3 :	$(q_1^*, \theta_1 u(q_1^*)), (q_1^*, \theta_1 u(q_1^*))$
C4 :	$(q_1^{SB}, \theta_1 u(q_1^{SB})), (q_2^{SB}, \theta_2 u(q_2^{SB}) - \Delta \theta u(q_1))$

where q_1^{SB} and q_2^{SB} are as above.

Question

- What are the actions available to agents under each of the above contracts?
- What are the outcomes of the above contracts?
- For P, which of the above contracts is the best?

A B >
 A B >

More General Schemes I

Up to this point, Principal has solved:

$$\max_{(q_1,T_1),(q_2,T_2)} \{\nu[T_1 - cq_1] + (1 - \nu)[T_2 - cq_2]\}$$

Question

Can the principal do better for herself by offering more general/complicated contracts?

Suppose: Principal offers wider choice set $[q, T_i(q)]$, for i = 1, 2, where $q \in Q \subset \mathfrak{R}_+$ and $T_i(q)$ is some function

$$T_i: \mathbf{Q} \mapsto \mathfrak{R}_+.$$

Principal can offer even a wider choice set [q, T(q)], where $q \in Q \subset \mathfrak{R}_+$ and T(q) is **any** function, i.e.,

$$T: \mathbf{Q} \mapsto \mathfrak{R}_+.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Under this more general scheme, Principal solves:

$$\max_{(T_1(q),T_2(q))} \{\nu[T_1(q_1) - cq_1] + (1 - \nu)[T_2(q_2) - cq_2]\}$$

Question

Does this more general scheme lead to a different outcome? Is the outcome better for the Principal?

4 A N

Contract as Mechanism I

In the above context, an outcome is a pair (q, T).

- Outcome: pair $(q, T) \in \mathfrak{R}^2_+$
- Utility/payoff of both parties depend on the outcome realized
- 𝒪 be the set of outcomes; 𝒪 ⊂ 𝔅²₊.
- a an action (message/signal) that can be taken (sent) by the agent
- \mathcal{A} be the set of feasible actions/messages; $a \in \mathcal{A}$.

Definition

Mechanism: A mechanism *M* is a pair (A, g), where $g(.) : A \mapsto O$, s.t.

$$(\forall a \in \mathcal{A})[g(a) = (q(a), T(a))]$$

- 3

Contract as Mechanism II

Contracts as Mechanisms:

Ram Singh (Delhi School of Economics)

э

イロト イポト イヨト イヨト

Contract as Mechanism III

Question

Under each of the above mechanisms

- What is the equilibrium ?
- What is the outcome ?

Remark

- Each of the above mechanisms generates a Bayesian game
- Each equilibrium of the game (defined in terms of action taken by players) induces an outcome.
- That is, if *σ_M* is an equilibrium, then the mechanism induces an outcome allocation mapping *o* ≡ *g* ∘ *σ_M* : Θ ↦ *O*

< ロ > < 同 > < 回 > < 回 >

Direct Vs Indirect Mechanisms I

Indirect: Principal offers wider choice set [q, T(q)], where $q \in Q \subset \mathfrak{R}_+$ and

 $T: \mathbf{Q} \mapsto \mathfrak{R}_+.$

Under this approach,

- $\mathcal{A} = \mathcal{Q} \subset \mathfrak{R}_+;$
- g(q) = (q, T(q))

Now, the agent of type θ_i will choose

$$q^*(heta_i) = rg\max_{q\in Q} \{U(heta_i, q, T(q)) \equiv rg\max_{q\in Q} \{ heta_i u(q) - T(q)\}$$

Let

$$q^*(\theta_1) = q_1, \text{ and } T(q_1^*) = t_1.$$
 (1)

and

$$q^*(\theta_2) = q_2$$
, and $T(q_2^*) = t_2$. (2)

Direct Vs Indirect Mechanisms II

Note the following will hold: For all i, j = 1, 2

$$\begin{array}{ll} U(\theta_i, q_i, t_i) = \theta_i u(q_i) - t_i &\geq \quad \theta_i u(q_j) - t_j = U(\theta_i, q_j, t_j) \\ U(\theta_i, q_i, t_i) = \theta_i u(q_i) - t_i &\geq \quad 0 \end{array}$$

That is, we have

$$\begin{array}{rcl} \theta_{1}u(q_{1})-t_{1} & \geq & \theta_{1}u(q_{2})-t_{2} \\ \theta_{2}u(q_{2})-t_{2} & \geq & \theta_{2}u(q_{1})-t_{1} \end{array} \tag{3}$$

$$\theta_1 u(q_1) - t_1 \ge 0,$$

 $\theta_2 u(q_2) - t_2 \ge 0.$
(5)

(6)

イロト イポト イヨト イヨト

Ram Singh (Delhi School of Economics)

э

Direct Vs Indirect Mechanisms III

Direct: The principal offers the following contract: $\{(q_1, t_1), (q_2, t_2)\}$, where

 $q_i = q^*(\theta_i)$, and $t_i = T(q_i^*)$,

as defined in (1). Under this approach,

•
$$\mathcal{A} = \{\theta_1, \theta_2\};$$

•
$$g(\theta_1) = (q_1, T_1)$$
 and $g(\theta_2) = (q_2, T_2)$

Question

What are the outcomes under the above contracts?

Question

- The first approach is a general (indirect) mechanism
- The second approach is a direct revelation mechanism
- The second approach is a direct and 'truthful revelation' mechanism

Direct Vs Indirect Mechanisms IV

Proposition

For every mechanism there exists a direct truthful revelation mechanism.

Remark

- An indirect mechanism can be replaced with a direct mechanism which attains the same outcome
- Optimization using direct mechanism is simpler

Under the general approach, P solves:

$$\max_{(T(q))} \sum \{\nu[T_1 - cq_1] + (1 - \nu)[T_2 - cq_2]\},\$$

s.t.

$$q_i = \arg \max_{q \in Q} \{ \theta_i u(q) - T(q) \}$$

and $\theta_i u(q_i) - T_i \geq 0$.

4 3 5 4 3 5 5

Direct Vs Indirect Mechanisms V

Under the direct approach, P solves:

$$\max_{(q_1,T_1),(q_2,T_2)} \sum \{\nu[T_1 - cq_1] + (1 - \nu)[T_2 - cq_2]\}$$

s.t.

$$\theta_1 u(q_1) - t_1 \geq 0,$$
(7)
 $\theta_2 u(q_2) - t_2 \geq 0.$
(8)

$$\theta_2 u(q_2) - t_2 \geq 0.$$
(8)

$$\begin{array}{lll} \theta_{1}u(q_{1})-t_{1} & \geq & \theta_{1}u(q_{2})-t_{2} \\ \theta_{2}u(q_{2})-t_{2} & \geq & \theta_{2}u(q_{1})-t_{1} \end{array} \tag{9}$$

The Revelation Principle I

Definition

Mechanism: A mechanism *M* is a pair (\mathcal{A}, g) , where $g(.) : \mathcal{A} \mapsto \mathcal{O}$, s.t.

$$(\forall a \in \mathcal{A})[g(a) = (q(a), T(a))]$$

Definition

A Direct Revelation Mechanism (DRM): A mechanism M is direct if $A = \Theta$.

Definition

Direct Truthful Revelation Mechanism: A mechanism *M* is direct and truthful if $A = \Theta$, and for all $\theta_i, \theta_j \in \Theta$

$$egin{aligned} & U(heta_i, g(heta_i)) = heta_i u(q(heta_i)) - T(heta_i) &\geq & heta_i u(q(heta_j)) - T(heta_j) = U(heta_i, g(heta_j)) (11) \ & U(heta_j, g(heta_j)) = & heta_j u(q(heta_j)) - T(heta_j) &\geq & heta_j u(q(heta_i)) - T(heta_j) = U(heta_j, g(heta_j)) (12) \end{aligned}$$

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Revelation Principle II

Suppose, the principal adopts a general mechanism M = (A, g). Agent with θ_i will choose $a^*(\theta_i) \in A$ s.t. for all $a \in A$

$$\theta_i u(q(a^*(\theta_i))) - T(a^*(\theta_i)) \ge \theta_i u(q(a)) - T(a)$$
(13)

Remark

Note mechanism a $M = (\mathcal{A}, g)$ induces an *outcome* mapping/rule $o(.) : \Theta \mapsto \mathcal{O}$ such that

$$o(\theta) = g(a^*(\theta_i)) = (q(a^*(\theta_i)), T(a^*(\theta_i))).$$

Proposition

For every a mechanism M = (A, g), there exists a DTRM that implements the same allocation.

Ram Singh (Delhi School of Economics)

The Revelation Principle III

Proof: Take any mechanism, say, M = (A, g). Let

$$g(a)=(q(a),T(a)).$$

Suppose it induces output allocation rule $o(.) : \Theta \mapsto O$. If the principle adopts such a mechanism, agent with θ_i will choose $a^*(\theta_i) \in A$ s.t. for all $a \in A$

$$U(\theta_i, g(a^*(\theta_i))) = \theta_i u(q(a^*(\theta_i))) - T(a^*(\theta_i)) \ge \theta_i u(q(a)) - T(a) = U(\theta_i, g(a))$$

In particular, for all $\theta_j \in \Theta$ and $a^*(\theta_j)$, the following holds:

$$\theta_i u(q(a^*(\theta_i))) - T(a^*(\theta_i)) \ge \theta_i u(q(a^*(\theta_j))) - T(a^*(\theta_j)).$$
(14)

Ram Singh (Delhi School of Economics)

The Revelation Principle IV

Define a mapping $\tilde{g}(.): \Theta \mapsto \mathcal{A}$, s.t. for all $\theta_i, \theta_j \in \Theta$

$$egin{array}{rcl} ilde{g}(heta_i) &=& (ilde{q}(heta_i), ilde{T}(heta_i)) \ &=& (q(a^*(heta_i)),T(a^*(heta_i))) = g(a^*(heta_i)) \end{array}$$

$$egin{array}{rcl} ilde{g}(heta_j) &=& (ilde{q}(heta_j), ilde{T}(heta_j)) \ &=& (q(a^*(heta_j)), T(a^*(heta_j))) = g(a^*(heta_j)) \end{array}$$

Now, $(\Theta, \tilde{g}(.))$ is a DRM.

Moreover, in view of definition of $\tilde{g}(.)$, (14) implies: for all $\theta_i, \theta_j \in \Theta$

$$\boldsymbol{U}(\theta_i, \tilde{\boldsymbol{g}}(\theta_i)) = \theta_i \boldsymbol{u}(\tilde{\boldsymbol{q}}(\theta_i)) - \tilde{\boldsymbol{T}}(\theta_i) \geq \theta_i \boldsymbol{u}(\tilde{\boldsymbol{q}}(\theta_j)) - \tilde{\boldsymbol{T}}(\theta_j) = \boldsymbol{U}(\theta_i, \tilde{\boldsymbol{g}}(\theta_j)), i.\boldsymbol{e}.,$$

 $(\Theta, \tilde{g}(.))$ is a DTRM.

Ram Singh (Delhi School of Economics)