1 Extensive form game and its subgames

In this section, we introduce a few notations describing an extensive form games and its subgames.

Let $\Gamma = \langle N, H, P, \{\pi_i\}_{i \in \mathbb{N}} \rangle$ be an extensive form game.

N: Set of players

H: Set of histories

P: Player function (describes which player is making a choice at history h for all $h \in H$)

 π_i : payoff of player *i* at all terminal histories

Action: Take a history h, let i be the player making a choice at h (that is P(h) = i). A(h) denotes the set of actions available to player i at h.

Strategy: A strategy is a complete plan of action. A strategy of player i (say s_i) describes i's choice of action at every history where i is the decision maker. Formally, s_i is a function; $s_i(h) \in A(h)$ at all $h \in H$, such that P(h) = i. S_i denotes strategy set of player i.

Intuitively, a **subgame** starting at history h is the residual game that follows h. Formally, it can be denoted by $\Gamma(h) = \langle N, H_h, P_h, \{\pi_i\}_{i \in N} \rangle$

 $H|_{h}$: Set of histories in the residual game. $H|_{h} = \{h' \mid \{(h, h')\} \in H\}$

 $P|_h$: Player function of the residual game. $P|_h(h') = P(\{h, h'\})$

Given a strategy s_i of player i in Γ , restriction of s_i in the subgame $\Gamma(h)$ is simply the relevant portion of the plan of action for the residual game. Formally, $s_i|_h(h') = s_i(\{h, h'\})$ for all $h' \in H|_h$.

2 Subgame Perfect Nash equilibrium and One Deviation property

Definition

A strategy profile (s_1^*, \ldots, s_n^*) is a **Subgame Perfect Nash Equilibrium** of a game Γ implies that $(s_1^*|_h, \ldots, s_n^*|_h)$ is a Nash equilibrium of subgame $\Gamma(h)$ for all $h \in H$ (Note that this includes the main game, that is history \emptyset). Thus for all $h \in H$ and for $i \in N$, $s_i^*|_h$ is a best response to $s_{-i}^*|_h$.

Definition

A strategy profile (s_1^*, \ldots, s_n^*) satisfies **One Deviation Property** if for all $h \in H$ (suppose P(h) = i),

$$\pi_i \left(s_i^* |_h, s_{-i}^* |_h \right) \ge \pi_i \left(s_i', s_{-i}^* |_h \right)$$

where (i) s'_i is a strategy of player *i* in the subgame $\Gamma(h)$ and (*ii*) s'_i and $s^*_i|_h$ only differ at the start of the subgame (that is at history *h*).

In each subgame, the player who makes the first move cannot benefit by changing her initial action.

Result

For finite horizon extensive form games:

A strategy profile (s_1^*, \ldots, s_n^*) is a Subgame Perfect Nash Equilibrium of a game $\Gamma \Leftrightarrow (s_1^*, \ldots, s_n^*)$ satisfies One Deviation Property.

Proof: If (s_1^*, \ldots, s_n^*) is a Subgame Perfect Nash Equilibrium then it trivially satisfies One Deviation Property.

We shall show that if (s_1^*, \ldots, s_n^*) satisfies One Deviation Property then it must be a SPNE. (Proof by contradiction) If this is not correct then we must have a strategy profile (s_1^*, \ldots, s_n^*) which satisfies ODP but is not a SPNE. If (s_1^*, \ldots, s_n^*) is not a SPNE then (by definition of SPNE) there is a history h and player $k \in N$ such that $s_k^*|_h$ is NOT a best response to $s_{-k}^*|_h$ in $\Gamma(h)$.

Step 1: Thus k has at least one profitable deviation in the subgame $\Gamma(h)$. From among all profitable deviations, choose \hat{s}_k for which the number of histories h' where $s_k^*|_h$ differs from \hat{s}_k (that is, $s_k^*|_h(h') \neq \hat{s}_k(h')$) is minimal. Since Γ has a finite horizon, so does $\Gamma(h)$ and this minimal number is finite.

Let \hat{h} be the longest history such that $s_k^*|_h(\hat{h}) \neq \hat{s}_k(\hat{h})$.

Step 2: Now, consider the strategy profile $(\hat{s}_k, s^*_{-k}|_h)$ for subgame $\Gamma(h)$. The game path of this strategy profile must be passing through \hat{h} . Otherwise,

the difference of choice of action at \hat{h} between \hat{s}_k and $s_k^*|_h$ is immaterial for profitability of \hat{s}_k . In which case, such difference is redundant and one can have a profitable deviation with fewer differences with $s_k^*|_h$. This is not possible because by choice \hat{s}_k has the minimal difference with $s_k^*|_h$ among all profitable deviations (refer to Step 1). Therefore the game path of strategy profile $(\hat{s}_k, s_{-k}^*|_h)$ must be passing through \hat{h} . Now, $\hat{s}_k(\hat{h})$ must be responsible for the profitability of \hat{s}_k , otherwise we can have a profitable deviation with fewer differences with $s_k^*|_h$.

Step 3: Now, consider $\Gamma(\hat{h})$ (the subgame following \hat{h}) and the strategy profile $(\hat{s}_k|_{\hat{h}}, s^*_{-k}|_{\hat{h}})$. Since \hat{h} was the longest history such that $s^*_k|_h(\hat{h}) \neq \hat{s}_k(\hat{h}), \hat{s}_k|_{\hat{h}}$ and $s^*_k|_{\hat{h}}$ differ only at the initial history of the subgame under consideration. By choice of \hat{s}_k (refer to Step 1) and Step 2, $\hat{s}_k|_{\hat{h}}$ is a profitable deviation from $s^*_k|_{\hat{h}}$ when the rest are playing $s^*_{-k}|_{\hat{h}}$. However this violates ODP of (s^*_1, \ldots, s^*_n) at history \hat{h} .

Hence what we assumed to start with (that there is strategy profile which satisfies ODP but is not a SPNE) is incorrect. [Proved]