Hidden Information

Ram Singh

Department of Economics

January 5, 2015

Ram Singh (Delhi School of Economics)

Adverse Selection

January 5, 2015 1 / 13

Contexts

Two players: Principal and Agent

Example

- Principal (an insurance company) and Agent an insuree
- Principal (a firm) and Agent a worker/manager
- Principal (a litigant) and Agent a lawyer
- Principal (a government) and Agent a firm
- Principal (a monopolist) and Agent a consumer
- Principal (a landlord) and Agent a tenant
- Principal (consumers) and Agent a firm

Assumption: The payoffs from the outside option are zero for both the parties.

< ロ > < 同 > < 回 > < 回 >

Production Technology I

Cost of production $C(q, \theta) = \theta q + F$, where

$$\theta \in \{\theta_1, ..., \theta_n\}, \ \mathbf{s}.t. \ \theta_1 < \theta_2... < \theta_n$$

and

$$Pr(\theta = \theta_i) = \nu_i.$$

Let $\theta \in \{\theta_1, \theta_2\}$ and $Pr(\theta = \theta_1) = \nu$.

The (money) value of q units of output to the principal is

$$V(q)$$
, where $V'(q) > 0$ and $V^{''}(q) < 0$.

Therefore, for given $\theta \in \{\theta_1, \theta_2\}$, the FB is a solution to

$$\max_{q} \{V(q) - C(q, \theta)\}, i.e., \max_{q} \{V(q) - \theta q - F\}$$

$$V'(q) = \theta$$

Ram Singh (Delhi School of Economics)

イロト 不得 トイヨト イヨト 二日

Production Technology II

Let q_i^* solve

$$V'(q) = \theta_i.$$

Clearly $q_1^* > q_2^*$.

Assumption: $W(q_i^*) = V(q_i^*) - \theta_i q_i - F \ge 0$ for all i = 1, 2. Indeed

$$W(q_2^*) = V(q_2^*) - \theta_2 q_2^* - F \ge 0 \Rightarrow W(q_1^*) = V(q_1^*) - \theta_1 q_1^* - F > 0.$$

Let F = 0.

First Best

First Best: Symmetric Information

Let

$$t_i^* = \theta_i q_i^*.$$

When there is no informational asymmetry about θ , the Principal will make the following *take it or leave it* offers:

- If $\theta = \theta_1$ the agent is offered (q_1^*, t_1^*) , i.e., t_1^* for production level q_1^* ; and
- If $\theta = \theta_2$ the agent is offered (q_2^*, t_2^*) , i.e., t_2^* for production level q_2^*

Since each agent gets non-negative utility from the offer, they accept it.

The first best payoff for the principal is

- $V(q_1^*) \theta_1 q_1^*$, if $\theta = \theta_1$;
- $V(q_2^*) \theta_2 q_2^*$, if $\theta = \theta_2$;
- Ex-ante payoff is

 $V^* = W^* = \nu(V(q_1^*) - \theta_1 q_1^*) + (1 - \nu)(V(q_2^*) - \theta_2 q_2^*), i.e.,$

the principal is able to appropriate the entire surplus from the trade. So the job delegation is costless for the principal.

Ram Singh (Delhi School of Economics)

Adverse Selection

Second Best: Hidden Information I

Assumption: The principal does not observe θ . However, know the distribution: knows that

$$Prob(\theta = \theta_1) = \nu.$$

Let

$$\Delta \theta = \theta_2 - \theta_1.$$

 $\Delta \theta > 0$ is a measure of spread of uncertainty about agent type.

Contractible variables are q and monetary transfers from principle to the agent t.

Definition

Contracts: A contract is a feasible, observable and verifiable allocation (q, t). The set of contracts is

$$\mathcal{A} = \{(q, t) : q \in \mathcal{R}_+, t \in \mathcal{R}\}.$$

A D N A B N A B N A B N

Second Best: Hidden Information II

Proposition

When principal does not observe θ , contract $((q_1^*, t_1^*), (q_2^*, t_2^*))$ cannot be implemented.

Note under contract $\{(q_1^*, t_1^*), (q_2^*, t_2^*)\},\$

$$U_1^* = t_1^* - heta_1 q_1^* = 0$$
 and $U_2^* = t_2^* - heta_2 q_2^* = 0, i.e.,$

truth telling means that each agent's payoff is equal to zero, i.e., the outside (reservation) payoff. However,

$$\theta_2 > \theta_1 \Rightarrow t_2^* - \theta_1 q_2^* > t_2^* - \theta_2 q_2^* = 0.$$

So

$$t_2^* - \theta_1 q_2^* > t_1^* - \theta_1 q_1^* = 0, \ i.e.,$$

type 1 agent is better of mimicking as type 2.

Ram Singh (Delhi School of Economics)

3 + 4 = +

• • • • • • • • • •

Second Best: Hidden Information III

Definition

A menu of contracts $\{(q_1, t_1), (q_2, t_2)\}$ is incentive compatible if

$$\begin{array}{lll} t_1 - \theta_1 q_1 & \geq & t_2 - \theta_1 q_2 \\ t_2 - \theta_2 q_2 & \geq & t_1 - \theta_2 q_1 \end{array} \tag{1}$$

Definition

A menu of contracts $\{(q_1, t_1), (q_2, t_2)\}$ is incentive compatible and (rationality) feasible if it satisfies (1) and (2) and

$$t_1 - \theta_1 q_1 \geq 0 \tag{3}$$

$$t_2 - \theta_2 q_2 \geq 0 \tag{4}$$

Second Best: Hidden Information IV

Example

Consider contract $\{(q_2^*, t_2^*), (q_2^*, t_2^*)\}$. You can check that this contract

- is incentive compatible, and
- results in pooling of types.

Example

Consider contract $\{(q_1^*, t_1^*), (0, 0)\}$. You can check that this contract

- is incentive compatible, but
- results in shutting down of inefficient types.

3 > 4 3

• • • • • • • • • •

Second Best: Hidden Information V

Remark

Properties of Incentive Compatible contracts:

• Monotonicity of Output: Adding (1) and (2) gives us

$$(heta_2- heta_1)q_1\geq (heta_2- heta_1)q_2,$$
 i.e.

 $q_1 \geq q_2$.

In fact, any pair (q_1, q_2) is implementable iff $q_1 \ge q_2$.

• (1) and (4) imply that as long as $q_2 > 0$,

$$t_1 - \theta_1 q_1 > 0, i.e.,$$

if inefficient type is required to produce, the payoff of the efficient type will be positive.

Ram Singh (Delhi School of Economics)

Second Best: Hidden Information VI

The principal's optimization problem is

$$\max_{(t_1,q_1),(t_2,q_2)} \{\nu(V(q_1)-t_1)+(1-\nu)(V(q_2)-t_2)\}$$

s.t., (1)-(4). Let $U_1 = t_1 - \theta_1 q_1$ and $U_2 = t_2 - \theta_2 q_2$. We rewrite (1)-(4) as

$$U_1 \geq U_2 + \Delta \theta q_2 \tag{5}$$

$$U_2 \geq U_1 - \Delta \theta q_1$$
 (6)

$$\begin{array}{ccc} U_1 \geq 0 & (7) \\ U_2 \geq 0 & (8) \end{array}$$

$$U_2 \geq 0 \tag{8}$$

Ram Singh (Delhi School of Economics)

Second Best: Hidden Information VII

Now the principal's optimization problem

$$\max_{(t_1,q_1),(t_2,q_2)} \{\nu(V(q_1)-t_1)+(1-\nu)(V(q_2)-t_2)\}$$

can be rewritten as

$$\max_{(U_1,q_1),(U_2,q_2)} \{ \nu(V(q_1) - \theta_1 q_1) + (1 - \nu)(V(q_2) - \theta_2 q_2) - (\nu U_1 + (1 - \nu)U_2) \}$$

s.t., (5)-(8).
$$\nu(V(q_1) - \theta_1 q_1) + (1 - \nu)(V(q_2) - \theta_2 q_2) - (\nu U_1 + (1 - \nu)U_2)$$

allocative efficiency

information rent

Ram Singh (Delhi School of Economics)

Adverse Selection

January 5, 2015 12 / 13

4 3 > 4 3

Second Best: Hidden Information VIII

Consider a contract

$$\{(\theta_1 q_1^* + \Delta \theta q_2^*, q_1^*), (\theta_2 q_2^*, q_2^*)\}, i.e.,$$

$$\{(U_1 = \Delta \theta q_2^*, q_1^*), (U_2 = 0, q_2^*)\}.$$

- It is incentive feasible and implements the FB.
- But, will principal offer this contract?

E 5 4