
Lecture 11: Decision Making Under Uncertainty

Ram Singh

Department of Economics

February 11, 2015

Ram Singh (Delhi School of Economics) Uncertainty February 11, 2015 1 / 21



Lotteries Money Lotteries

Money Lottery I

Take a probability space (Ω, ϑ, µ), where Ω = {s1, s2, s3, s4, s5, s6}, etc. as
above. Let

a : Ω 7→ {x1, ..., x6}, a(si ) = xi .

We can interpret x ∈ R as wealth. Let

X = {x1, ..., x6} = {0,10,100,50,20,200}.

We may represent the random variable a : Ω 7→ X simply by the vector
(0,10,100,50,20,200).

Money Lottery is (Ω, ϑ, µ) along with a : Ω 7→ X .

ζ is set of subsets of X . Let,

a−1 : ζ 7→ ϑ.
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Lotteries Money Lotteries

Money Lottery II

Now consider a function F (.) such that

F (0) = µ[s1] = µ ◦ a−1{0} =
1
6
,

F (50) = µ[s1, s2, s4, s5] = µ ◦ a−1{x ∈ X |x ≤ 50} =
4
6
,

F (100) = µ[s1, s2, s3, s4, s5] = µ ◦ a−1{x ∈ X |x ≤ 100} =
5
6

That is,
F (.) : X 7→ [0,1]. F (x) = µ ◦ a−1(−∞, x ]

The above lottery can be represented by the random variable a : Ω 7→ X
along with the distribution function F (.) : X 7→ [0,1].
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Lotteries Money Lotteries

Money Lottery III

Consider another lottery spanned by random variable â : Ω 7→ X̂ , where

X̂ = {x1, ..., x6} = {20,10,100,50,40,45}.

(Ω, ϑ, µ) along with â is a different Money Lottery.

For â, let the distribution function be F̂ (.) : R 7→ [0,1].

F̂ (50) = µ[s1, s2, s4, s5, s6] = 5
6 , F̂ (100) = µ[s1, s2, s3, s4, s5, s6] = 1.

Note that F (100) = 5
6 and F̂ (100) = 1, i.e, different different combinations of

space and random variable, i.e., different lotteries generate different
Distribution Functions.

Therefore, we can study this second lottery with the help of the relevant
random variable and the distribution function F̂ (.).
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Lotteries Money Lotteries

Money Lottery IV

When Ω and therefore X are finite, F (x) =
∑
{s:a(s)≤x} µ(s) =

∑
{s:a(s)≤x} ps,

where ps = µ(s).

When x is continuous, under certain conditions F (x) has a density function
f (.) such that,

(∀x ∈ [x0,∞))[F (x) =

∫ x

x0

f (t)dt ]

Definition

Money Lottery: is a distribution fn F (.) : [x0,∞) 7→ [0,1] where x0 ∈ R
generally.

Let

L = {F (.)|F (.) : [x0,∞) 7→ [0,1]}.
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Lotteries Money Lotteries

Money Lotteries and Expected Utility I
Assumptions:

The decision maker has � defined over L

Expected Utility Theorem holds.

That is, for L = (p1, ...,pS)

U(L) = p1u1 + ...+ pSuS =
S∑

i=1

piui

When x is continuous, there exists a function u : [x0,∞) 7→ R such that

(∀F (.) ∈ L)[U(F ) =

∫
u(x)dF (x)].

F (.) � G(.)⇔ U(F ) ≥ U(G), i .e.,

F (.) � G(.)⇔
∫

u(x)dF (x) ≥
∫

u(x)dG(x).
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Lotteries Money Lotteries

Money Lotteries and Expected Utility II

We will assume u to be continuous, increasing in x and bounded above.

It is easy to see that

U(F ) =

∫
u(x)dF (x) =

∫
u(x)f (x)dx .

Moreover, U(.) is linear in distributions F (.).
Since,

U(γF (x) + G(x)) =

∫
u(x)d [γF (x) + G(x)] =

γ

∫
u(x)dF (x) +

∫
u(x)dG(x) = γU(F (x)) + U(G(x)).
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Lotteries Money Lotteries and Risk Aversion

Risk Aversion I

Definition

Degenerate Lottery: A lottery represented by F (.) is degenerate if
µ ◦ a−1(x ′) = 1 for some x ′ ∈ R. In that case,

(∀x < x ′)[F (x) = 0] and (∀x ≥ x ′)[F (x) = 1].

Example: Let a(si ) = xi . Now, lotteries (1,0), (0,1) over Ω = {s1, s2} and
(1,0,0) over Ω̂ = {s1, s2, s3} are Degenerate Lotteries.
The money lottery ( 1

3 ,
1
3 ,

1
3 ) over Ω̂ = {s1, s2, s3} such that

a(si ) = 100

is also a degenerate money lottery.

Definition

Non-Degenerate Lottery: A lottery represented by F (.) is no-degenerate if it
is not degenerate.
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Lotteries Money Lotteries and Risk Aversion

Risk Aversion II

Let x̄ be the initial wealth level of the decision maker with �. Assume x̄ = 0.

Take a lottery F (.) ∈ L. The expected monetary value of (return from) this
lottery is∑

pixi , if x takes only finite values∫
xdF (x), if x is a continuous variable

Let,

Fd (.) be a (degenerate) lottery that yields
∫

xdF (x) with probability 1.

Example

Let Ω = X = {0,1,2}. If we take lottery ( 1
2 ,0,

1
2 ), then the corresponding

degenerate lottery is (0,1,0).
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Lotteries Money Lotteries and Risk Aversion

Risk Aversion III

Definition

Risk Aversion: A decision maker with � is risk averse for the lottery F̂ (.) if

F̂d (.) � F̂ (.).

Definition
Risk Aversion: A decision maker with � is risk averse if

(∀F (.) ∈ L)[Fd (.) � F (.)]., i .e.,

(∀F (.) ∈ L)[u(

∫
xdF (x)) ≥

∫
u(x)dF (x)].
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Lotteries Money Lotteries and Risk Aversion

Risk Aversion IV

Definition
Strict Risk Aversion: A decision maker with � is strictly risk averse if for all
non-degenerate lotteries

(∀F (.) ∈ L)[Fd (.) � F (.)]., i .e.,

(∀F (.) ∈ L)[u(

∫
xdF (x)) >

∫
u(x)dF (x)].

By definition, if u exhibits (strict) risk aversion then u is (strictly) concave.
(Jensen’s inequality).
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Lotteries Money Lotteries and Risk Aversion

Risk Aversion V

Definition
Risk Neutrality: A decision maker with � is risk-neutral if

(∀F (.) ∈ L)[Fd (.) ∼ F (.)]., i .e.,

(∀F (.) ∈ L)[u(

∫
xdF (x)) =

∫
u(x)dF (x)].

Example

Let Ω = X = {0,1,2}. A risk-neutral agent is indifferent between the lottery
( 1

2 ,0,
1
2 ) on one hand and the corresponding degenerate lottery is (0,1,0), on

the other hand.
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Lotteries Money Lotteries and Risk Aversion

Certainty Equivalent I

Consider a decision maker with u, and the initial wealth level x̄ . Now this
person’s utility is given by∫

u(x̄ + z̃)dF (z̃), if s/he gets lottery F (z̃)

u(x̄ + c(F ,u, x̄)), if s/he gets amount c(F ,u, x̄) with certainty.

Certainty Equivalent: c(F ,u, x̄) is the certainty equivalent of the lottery F (z̃) if

u(x̄ + c(F ,u, x̄)) =

∫
u(x̄ + z̃)dF (z̃). (1)

Proposition

The following statements are equivalent:
u is concave;
u exhibits risk-aversion;
(∀F (.) ∈ L)[c(F ,u, x̄) ≤

∫
z̃dF (z̃)]
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Lotteries Money Lotteries and Risk Aversion

Risk Premium I

Consider a decision maker with u, and the initial wealth level x̄ . Now this
person’s utility is given by∫

u(x̄ + z̃)dF (z̃), if s/he gets lottery F (z̃)

u(x̄ +
∫

z̃dF (z̃)), if s/he gets the expected value of the lottery F (z̃) with
certainty

Definition
Risk Premium: Consider a decision maker with u at wealth level x̄ . Now,
ρ(x̄ , z̃) is the risk premium for risk/lottery z̃ with distribution F (z̃) if∫

u(x̄ + z̃)dF (z̃) = u(x̄ +

∫
z̃dF (z̃)− ρ(x̄ , z̃)). (2)

That is, at the wealth level x̄ , the decision maker is indifferent b/w bearing the
risk z̃ and having a sure amount of

∫
z̃dF (z)− ρ(x̄ , z̃).

Ram Singh (Delhi School of Economics) Uncertainty February 11, 2015 14 / 21



Lotteries Money Lotteries and Risk Aversion

Risk Premium II
From (1) and (2),

c(F ,u, x̄) =

∫
z̃dF (z̃)− ρ(x̄ , z̃), i .e., ρ(x̄ , z̃) =

∫
z̃dF (z̃)− c(F ,u, x̄). (3)

When u exhibits risk-aversion, i.e., (∀F (.) ∈ L)[c(F ,u, x̄) ≤
∫

z̃dF (z̃)],

ρ(x̄ , z̃) ≥ 0.

Definition

Insurance Premium: For given wealth level x̄ , let’s add risk z̃ with distribution
F (z̃). Insurance Premium cI(F ,u, x̄) is given by

u(x̄ − cI(F ,u, x̄)) =

∫
u(x̄ + z̃)dF (z̃). (4)

the insurance premium, cI(F ,u, x̄) is the amount that makes the decision
maker indifferent b/w accepting the risk z̃ and a payment of cI(F ,u, x̄).
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Lotteries Money Lotteries and Risk Aversion

Risk Premium III

From (1) and (4),

cI(F ,u, x̄) = −c(F ,u, x̄) = ρ(x̄ , z̃)−
∫

z̃dF (z̃). (5)

When the risk is actuarially fair, i.e.,
∫

z̃dF (z̃) = 0,

cI(F ,u, x̄) = −c(F ,u, x̄) = ρ(x̄ , z̃).

Since, ρ(x̄ , z̃) ≥ 0 the decision maker will pay a non-negative amount to get
rid of the risk.

Exercise: Show that when u is strictly concave and
∫

z̃dF (z̃) ≤ 0,
cI(F ,u, x̄) > 0.
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Lotteries Money Lotteries and Risk Aversion

Measuring Risk Aversion I

Can u′′(x) measure risk-aversion?

Definition
Arrow-Pratt Coefficient: Arrow-Pratt Coefficient of Absolute Risk-aversion at
wealth level x̄ ∈ R is

rA(x̄ ,u) = −u′′(x̄)

u′(x̄)
.

rA is a local measure and is defined only when u′(x̄) 6= 0;

rA(x̄ ,u) > 0 implies aversion toward risk.
rA(x̄ ,u) < 0 implies love for risk.
rA(x̄ ,u) = 0 implies risk neutrality.

Suppose, v(x̄) = βu(x̄) + γ, where β > 0, then rA(x̄ , v) = rA(x̄ ,u).
rA(x̄ ,u) is invariant to affine transformations of u.
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Lotteries Money Lotteries and Risk Aversion

Measuring Risk Aversion II

From rA(x̄ ,u) we can recover u up to two constants of integration. In fact, we
can recover the preference relation fully.

Let rA(x̄ ,u) = − u′′(x̄)
u′(x̄) = t , t > 0. Integrating, rA(x̄ ,u) gives us

u(x̄) = −βe−tx + γ for some β > 0.

−βe−tx + γ represents the same preference relation, regardless of β > 0 and
γ.
As a special case, we get u(x) = −e−tx .

In general, we can write

u(x) =

∫
e−

∫
r(x)dxdx .
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Lotteries Money Lotteries and Risk Aversion

Measuring Risk Aversion III

It is possible to demonstrate that for ‘small’ risks

rA(x̄ ,u) = 2
ρ(x̄ , z̃)

σ2
z̃

, i .e.,

rA(x̄ ,u) and ρ(x̄ , z̃) have the same sign and are proportional to each other.

Definition
Coefficient of Relative Risk Aversion: For a u, at x̄ , the CRRA is

rR(u, x̄) = −x̄
u′′(x̄)

u′(x̄)
.

Suppose the risk z̃ is proportional in that an arbitrary realization takes value
zx̄ .
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Lotteries Money Lotteries and Risk Aversion

Measuring Risk Aversion IV

Example

for u(x) = log x and u(x) ∼ log x , rR(u, x) = 1

for u(x) ∼ x1−c , where c < 1, rR(u, x) = c

for u(x) ∼ −x (1+c), where c > 1, rR(u, x) = −c.

Clearly, rR(u, x̄) = x̄ rA(u, x̄).
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Lotteries Money Lotteries and Risk Aversion

Comparing Risk Aversion I

Proposition

An individual with u2(.) is more risk averse than the individual with u1(.) if any
of the following holds:

(∀x)([rA(x ,u2) ≥ rA(x ,u1)];

There exists an increasing and concave function ψ(.) such that
(∀x)[u2(x) = ψ(u1(x))];

u2 ◦ u−1
1 (.) is concave;

(∀x)(∀F (.))[c(F ,u2, x) ≤ c(F ,u1, x)];

∀F (.)[
∫

u2(x + z̃)dF (x) ≥ u2(x̄)⇒
∫

u1(x + z̃)dF (x) ≥ u1(x̄)].
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