Problem Set 2, MIEG, Winter Term, 2015

Osborne, An introduction to Game Theory
Chapter 5: 173.4, 174.2, 176.2, 177.1, 177.2
Chapter 6: 183.4, 191.1, 196.3, 196.4
Chapter 7: 210.3, 211.1, 214.1, 227.2

1. Consider the following two players game. First player 1 can choose between two actions 'Stop' or 'Continue'. If she chooses 'Stop' then the game ends with payoffs $(1,1)$. If she chooses 'Continue' then the players simultaneously announce non-negative numbers and each player's payoff is the product of the announced numbers. Formulate this situation as an extensive game and find its SPNE.
2. There are two players, a buyer and a seller. At period 1, the seller chooses his investment level $I \geq 0$ at cost I. At period 2 , the seller produces one unit of a good at cost $c(I)$. Higher the investment, lower the cost of production, that is $c^{\prime}<0$. Moreover let us assume that $c^{\prime \prime}>0$ and $c(0)<v$ where v is buyer's utility from consuming the good. Buyer observes the investment I and makes a 'take-it-or-leave-it' price offer to the seller.
(a) Model this interaction as a game.
(b) Find SPNE of this game.
(c) What is the socially optimal level of investment?
(d) Is it possible for the buyer and the seller to agree on a contract (before period 1) which delivers the socially optimal investment? Note that contracts can not written on the level of I, because such contracts are not verifiable.
3. A firm's production function is given by

$$
Q(L)=L(100-L) \text { if } L \leq 50 \text { and } Q(L)=2500 \text { if } L>50
$$

where L is the number of workers. The price of output is 1 . A union that represents workers presents a wage demand (a nonnegative real number w), which the firm either accepts or rejects. If the firm accepts the demand, it
chooses L (a nonnegative real number, not necessarily an integer); if it rejects the demand, no production takes place $(L=0)$. The firm's preferences are represented by its profit whereas the union's preferences are represented by the total wage bill, $w L$.
(a) Find the subgame perfect equilibria of the above game.
(b) Is there a outcome of the game which is Pareto superior to any subgame perfect equilibrium outcome? What is the maximum joint surplus of this game?
(c) Is there a Nash equilibrium of this game, where the firm keeps the entire joint surplus. Explain.
4. Consider two countries, A and B and a single good which is consumed only in country B. The inverse demand function is given by $p=a-\left(q_{A}+q_{B}\right)$, where q_{i} is the total output produced by country i. Let c be the marginal cost of production, same for both the countries.
(a) Suppose that there are two producers, one in each country. Market interaction has two periods. In period 1 , government of country A chooses a per unit export tax or subsidy for the home firm. In period 2 , both firms choose quantities simultaneously. Firms maximize their profit whereas Country A's government maximizes the sum of its own receipts (tax/subsidy) and the profit of its firm. Find SPNE of this game.
(b) What happens if both the firms are located in Country A ?
5. [Two stage model of Hotelling's price competition] Consumers are uniformly distributed over a linear city of length 1 . All consumers consume one unit of a good which can be produced at 0 cost. There are two firms, each of which chooses a location (simultaneously) in the city in the first period. In the second period each chooses a price simultaneously. Each consumer buys one unit of the good from the firm for which price plus travel cost is lowest. Travel cost is $C(d)=c d^{2}$ where d is the distance traveled and c is a constant. Find SPNE of this game.
6. We have three players: a Worker, an Employer, and an Arbitrator. They want to set the wage w. If they determine the wage w at date t, the pay-
offs of the Worker, the Employer and the Arbitrator will be $\delta^{t} w, \delta^{t}(1-$ $w)$ and $w(1-w)$, respectively, where $\delta \in(0,1)$. The time line is as follows:

- At time $\mathrm{t}=0$,
- the Worker offers a wage w_{0};
- the Employer accepts or rejects the offer;
- if she accepts the offer, then the wage is set at w_{0} and the game ends; otherwise we proceed to the next date.
- At time $\mathrm{t}=1$,
- the Employer offers a wage w_{1};
- the Worker accepts or rejects the offer;
- if he accepts the offer, then the wage is set at w_{1} and the game ends; otherwise we proceed to the next date;
- at time $\mathrm{t}=2$, the Arbitrator sets a wage $w_{2} \in[0,1]$ and the game ends.

Compute the SPNE of this game. How would your answer change if at time $\mathrm{t}=2$, the Arbitrator can only set wage $w_{2} \in\left\{w_{0}, w_{1}\right\}$, i.e., the Arbitrator has to choose one of the offers made by the previous two parties.

