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1 Basics

So far the production technology used by us allowed the Agent to perform only
one task; and there was only one output y. In real world, employees at work
perform multi-tasks. For example, workers produce output using firm assets as
well as Maintain assets. Managers/CEO supervise existing workers/employees,
train existing workers/employees, and hire new workers/employees. Salespersons
promote sale with existing customers as well make new customers. Teachers are
expected to teach, do research, and perform some administrative works.

The real-world output is also multi-dimensional. Workers output consists
of quantity/units of output and the residual value of assets. Managers/CEO
decisions affect the current profits as well as the value of stocks/shares of company.
Teachers efforts affect the teaching quality and quantity and also Research output.
In this module we address the following questions:

1. Why are many incentive schemes ‘low powered’? Specifically, why wages
that do not depend on some measure of output?

2. Why at times some verifiable signals of effort are left out of the contract?

3. Should tasks be performed through employment contract or be purchased
using (market) contracts?

2 Model

The Agent performs multiple tasks. Each task requires specific effort on the
part of the Agent.1 The vector of efforts put in by the Agent is represented
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by e = (e1, ..., en), where e ∈ E = Rn
+. The (money) cost of effort function

ψ(e) = ψ(e1, ..., en) is such that ∂ψ(e)
∂ei

> 0, for all i = 1, 2, ..., n. Moreover, ψ(e)
strictly convex. As a result of efforts, an output vector q = (q1, ..., qn) is produced;
i.e., q ∈ Rn

+ and q : Rn
+ 7→ Rn

+. It is standard to assume that q = q(e, ε), E(ε) = 0.
Besides, as a result of efforts, a vector of contractible signals, x, is also produced.
In general, we let x = (x1, ..., xk) ∈ Rk. Specifically, x : Rn

+ 7→ Rk such that

x = µ(e) + ε.

Assume µ : Rn
+ 7→ Rk is concave, and that the vector ε is multi-normal, i.e.,

ε ∼ N(0,Σ), where 0 is k-vector of zeros, and Σ is k × k variance-covariance
matrix. The signal can be the output n-vector q ∈ Rn itself, or some other
signal. In the former case, x = q ∈ Rn

+. Different outputs/signals can have
different ‘measurability’, as discussed below. Assume that principal offers a linear
contract:

w(x) = t+ sTx = t+
k∑
i=1

sixi,

where si ≥ 0, i = 1, ..., k. Payoffs of the parties are as defined below: Principal
is risk-neutral with expected payoff V = V (q, w) or simply V = V (e, w). Agent
is risk-averse with payoff function u(w, e) = E

(
−e−r(w−ψ(e))

)
, r > 0, where r =

−u
′′

(.)
u′(.)

> 0, i.e., the agent holds CARA preference.

3 A Simple Version

Suppose the Agent performs only two tasks; i = 1, 2. As a result, two sig-
nals/outputs are produced: q = x = µ(e) + ε = e + ε, where q, e, ε ∈ R2.
Specifically, qi(ei, εi) = ei + εi, where

q1(e1, ε1) = e1 + ε1

q2(e2, ε2) = e2 + ε2,

ε = (ε1, ε2) ∼ N(0,Σ), where Σ is 2 × 2 variance-covariance matrix; Σ =(
σ2

1 R
R σ2

2,

)
and R ∈ R. As before, let the contract be linear: w(x) = t +

s1q1 + s2q2, where si ≥ 0. Also, let Principal’s payoff function be: V (q1, q2, w) =
E(q1 + q2 − w) = e1 + e2 − E(w). Let ψ(e) = 1

2
c1e

2
1 + 1

2
c2e

2
2 + δe1e2. Clearly,

∂ψ(e1,e2)
∂e1

= c1e1 + δe2 and ∂ψ(e1,e2)
∂e2

= c2e2 + δe1. Note the following:
δ = 0 tasks are independent;
δ > 0 tasks are technological substitutes;
δ < 0 tasks are technological complements.

Tasks are perfect substitutes if δ =
√
c1c2; imperfect substitutes if 0 < δ <

√
c1c2.

Moreover, E(w(x)) = E(t + s1(e1 + ε1) + s2(e2 + ε2)) = t + s1e1 + s2e2. And,
V ar(t+ s1(e1 + ε1) + s2(e2 + ε2)) = s2

1σ
2
1 + s2

2σ
2
2 + 2Rs1s2.
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3.1 First Best:

The first best is solution to

max
ei,t,si

E
(∑

qi − w
)

s.t. −e−r[w−ψ(e1,e2)] = −e−rw̄, i.e., w−ψ(e1, e2) = w̄, i.e., w = w̄+ψ(e1, e2), where
w̄ denotes the Certainty equivalent of the reservation (outside) wage. Therefore,
the first best is solution to maxe1,e2 E(q1 +q2− w̄−ψ(e1, e2)), i.e., maxe1,e2 E(e1 +
ε1 + e2 + ε2 − w̄ − ψ(e1, e2)), i.e.,

max
e1,e2

{
e1 + e2 −

[
1

2
c1e

2
1 +

1

2
c2e

2
2 + δe1e2

]}
Therefore, the first best efforts, e∗1 and e∗2, solve the following FOCs:

e1 : c1e1 + δe2 − 1 = 0 (1)

e2 : c2e2 + δe1 − 1 = 0. (2)

3.2 Second Best:

Under the second-best, e is not contractible but q is. Note that in this subsection
x = q by assumption. As before, for given w(s, t) offered by the principal, the
Agent solves maxe1,e2{ŵ(e1, e2)}, where

ŵ(e1, e2)︸ ︷︷ ︸
certainty−equivalent wage

= E[w(e1, e2)]︸ ︷︷ ︸
expected wage

− ψ(e1, e2)︸ ︷︷ ︸
effort cost

− r

2
V ar[w(e1, e2)]︸ ︷︷ ︸
risk−premium

, i.e.,

So the Agent solves:

max
e1,e2

t+ s1e1 + s2e2︸ ︷︷ ︸
expected wage

−
[

1

2
c1e

2
1 +

1

2
c2e

2
2 + δe1e2

]
︸ ︷︷ ︸

effort cost

−r
2

s2
1σ

2
1 + s2

2σ
2
2 + 2Rs1s2︸ ︷︷ ︸

risk−premium




So, given w(.) opted by the Principal, the Agent will choose e1 and e2 that
satisfy the following FOCs:

s1 − c1e1 − δe2 = 0 (3)

s2 − c2e2 − δe1 = 0. (4)

That is, the effort vector chosen by the Agent is solution to

s−∇ψ(e) = 0,
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where s = (s1, s2)T and ∇ψ(e) = (ψ1(e), ψ(e)2)T is the gradient vector of ψ(e).
The IR is given by u(ŵ(e1, e2)) ≥ u(w̄), i.e., ŵ(e1, e2) ≥ w̄, i.e.,

t+ s1e1 + s2e2 −
[

1

2
c1e

2
1 +

1

2
c2e

2
2 + δe1e2

]
− r

2

[
s2

1σ
2
1 + s2

2σ
2
2 + 2Rs1s2

]
≥ w̄ (5)

So, the Principal will solve: maxe1,e2,t,s1,s2 E[q1 + q2−w(q1, q2)] = E[q1 + q2− (t+
s1q1 + s2q2)], i.e.,

max
e1,e2,t,s1,s2

E[e1 + (1− s1)ε1 + e2 + (1− s2)ε2 − (t+ s1e1 + s2e2)]

s.t. (3)− (5) hold. Clearly, (5) will bind. Therefore, the Principal’s problem can
be written as:

max
e1,e2,s1,s2

{
e1 + e2 −

[
1

2
c1e

2
1 +

1

2
c2e

2
2 + δe1e2

]
− r

2

[
s2

1σ
2
1 + s2

2σ
2
2 + 2Rs1s2

]}
s.t. (3) and (4) hold. More generally, the Principal’s programme is:

max
e

{
V (e)− ψ(e)− r

2
sTΣs

}
s.t. e = arg max{sTµ(e)− ψ(e)}

3.2.1 R = 0:

Using (3) and (4), the FOC w.r.t. e1 is

1− [c1e1 + δe2]− r[c1s1σ
2
1 + s2σ

2
2δ] = 0.

From (3), we know s1 = c1e1 +δe2 and s2 = c2e2 +δe1. Therefore, we can re-write
the FOC:

s1 =
1− rσ2

2δs2

1 + rσ2
1c1

(6)

By symmetry FOC w.r.t. e2 gives

s2 =
1− rσ2

1δs1

1 + rσ2
2c2

, i.e., (7)

in view of (6), we get s2 =
1−rσ2

1δ
1−rσ22δs2
1+rσ21c1

1+rσ2
2c2

, i.e.,

sSB2 =
1 + rσ2

1(c1 − δ)
(1 + rσ2

1c1)(1 + rσ2
2c2)− δ2σ2

1σ
2
2r

2
(8)

Similarly,

sSB1 =
1 + rσ2

2(c2 − δ)
(1 + rσ2

1c1)(1 + rσ2
2c2)− δ2σ2

1σ
2
2r

2
(9)
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From (8) and (9), it can be checked that ∂si
∂σi

< 0 and ∂si
∂σj

< 0. That is, if

the measurability (preciseness) of the first task comes down the Principal reduces
incentives on both the tasks. Similarly, if the measurability (preciseness) of the
Second task comes down. Moreover, σ2

2 ⇒∞ implies

s2 ⇒ 0

s1 ⇒
r(c2 − δ)

(1 + rσ2
1c1)rc2 − δ2σ2

1r
2

That is, Principal induces Agent to specialize on the first task. When δ = 0,
from (8) and (9) we get

si =
1

1 + rσ2
i ci

=
1

1 + rσ2
iψii

Remark: From (3) and (4) note: if δ = 0, de1
ds1

= 1
c1

= 1
ψ11

> 0 and de2
ds2

=
1
c2

= 1
ψ22

> 0. Also, from (6) and (7), if δ > 0, s1(δ) < s1(0) & s2(δ) < s2(0);

and if δ < 0, s1(δ) > s1(0) & s2(δ) > s2(0). Therefore, ‘power’ of the incentives
is inversely proportional to δ.

3.2.2 R 6= 0:

For simplicity assume δ = 0, σ2
1 = σ2

2 = σ2, c1 = c2 = c = 1. Now, ICs are

si = ei =
ψ(e|δ = 0)

∂ei
, i = 1, ..., n.

So, Principal solves:

max
e1,e2

{
e1 + e2 −

[
1

2
e2

1 +
1

2
e2

2 + δe1e2

]
− r

2

[
e2

1σ
2
1 + e2

2σ
2
2 + 2Re1e2

]}
FOCs are

1− rRe2 − e1 − rσ2e1 = 0

1− rRe1 − e2 − rσ2e2 = 0

So,

e1 = e2 = eSB =
1

1 + rσ2 + rR

Clearly,
∂eSBi
∂R

=
∂sSBi
∂R

< 0. That is, if the error terms are positively correlated, i.e.,
R > 0, compared to the case when R = 0, the Principal will reduce the power of
the incentive. In contrast, if R < 0, the Principal will increase the power of the
incentive.

Exercise 1 Provide an intuitive explanation for the result
∂eSBi
∂R

=
∂sSBi
∂R

< 0.
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4 General Model

Recall, x : Rn
+ 7→ Rk

+ such that: x = µ(e)+ε, where µ : Rn
+ 7→ Rk is concave, ε ∼

N(0,Σ) and Σ =


σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k
...

...
. . .

...
σk1 σk2 · · · σkk

 , where σjj = σ2
j , for all j = 1, 2..., k.

In the FB, the Principal solves:

max
e∈Rn

+

{V (e)− ψ(e)} .

Assume that the above programme is concave. In the SB, suppose contract is
linear: w = sTµ(e) + t. Now, the certainty equivalent wage for Agent is:

ŵ(sT , t, e) = E
(
−e−r(w(sT ,t)−ψ(e))

)
= sTµ(e) + t︸ ︷︷ ︸

expecedwage

− ψ(e)︸︷︷︸
effortcost

− r

2
sTΣs︸ ︷︷ ︸

riskpremium

.

As before, for given s ∈ Rk opted by the Principal, the Agent will choose e ∈
Rn

+ to maximize ŵ(sT , t, e). Assume µ(e) = e. So, the FOCs for the Agent’s
programme are given by:

(∀i = 1, ..., n)[si − ψi(e) = 0], i.e.,

s(e)−∇ψ(e) = 0. (10)

(10) further gives us ∇s(e) = [ψij], where [ψij] is the n × n matrix of second

derivatives of ψ(e). That is, [ψij] =


ψ11 ψ12 · · · ψ1n

ψ21 ψ22 · · · ψ2n
...

...
. . .

...
ψn1 ψn2 · · · ψnn

 . Use of the inverse

function theorem gives us ∇e(s) = [ψij]
−1. Now, the Principal programme is:

max
e∈Rn

+

{
V (e)− sTµ(e)− t

}
s.t.

IC : e = arg max
{
sTµ(e)− ψ(e)

}
IR : sTµ(e) + t− ψ(e)− r

2
sTΣs ≥ 0.

IR will bind. So, P’s programme can be written as can be written as

max
e∈Rn

+

{
V (e)− ψ(e)− r

2
sT (e)Σs(e)

}
6



s.t. IC, i.e., e = arg max{sTµ(e) − ψ(e)}. In view the fact that s(e) = ∇ψ(e),
i.e., si = ψi(e), the FOCs for P’s programme w.r.t. e are given by:

(∀i = 1, .., n)

[
∂V (e)

∂ei
= si(e) + r

n∑
k=1

n∑
j=1

sj(e)σjkψki(e)

]
. (11)

In vector form, the FOCs are given by:

∇V (e) = [I + r[ψij]Σ]s(e) (12)

where I is the n× n identity matrix. (12) gives us

s(e) = [I + r[ψij]Σ]−1∇V (e) (13)

Note that when Σ and [ψij] are both diagonal, from (11), we get

(∀i = 1, ..., n)

[
si =

∂V (e)
∂ei

1 + rσ2
iψii

]

If we assume that ψT (e)Σψ(e) is convex, the unique solution is identified by the
FOCs.

5 Applications

5.1 Dependent Tasks: Conclusions

When tasks are interdependent and the worker is risk averse: The owner will

• use incentive contract for the measurable tasks.

• however, will use low-powered incentive contracts

• due to multi-tasking, the incentive pay encourages substitution among tasks

• desirability of high-power incentive contracts for measurable tasks reduces
as the measurably of some other tasks reduces

• low-powered incentive contracts

– reduce the undesirable substitution among tasks, where the employee
focuses only on the tasks that are awarded and ignore other tasks

– reduce the undesirable consequences of measurable talks.

The measurability of tasks is an important determinant of integration of tasks
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• an employee is allowed to engage in ‘outside’ activities only if the ‘inside’
tasks are measurable.

• when ‘inside’ tasks are measurable, the worker can be induced to work for
firm by using incentives on the output produced.

• when ‘inside’ tasks are NOT measurable, the worker can be induced to work
for firm by ruling out the possibility of working for someone else.

• That is, when ‘inside’ tasks are NOT measurable, the worker will be em-
ployed as and employee of the firm rather than working independently.

• So, non-measurability of outputs increases the ‘size’ of the firm, (in terms
of number of employees).

5.2 Low incentives within firms

Nobel prize winning economist Williamson has argued that firms use low-powered
employment contracts, rather than the high powered contracts predicted by the
theory of moral hazard.2 Here is a formal explanation. Assume that the Agent
can use some assets to perform two tasks; t = 1, 2. As a result, two outputs
are produced; q1 and q2. Besides, two signals are generated: xi(ti, εi) = µ(ti) +
εi = ti + εi, i = 1, 2, ε ∼ N(0,Σ), where Σ is variance-covariance matrix; Σ =(
σ2

1 0
0 σ2

2

)
. q2 is enjoyed by the owner of the assets and cannot be contracted

away. So if the Principal is the owner of assets then his payoff is V (q1, q2, w) =
v1(q1) + v2(q2) − w. In contrast, if A is the owner of assets, the P’s payoff is
V (q1, q2, w) = v1(q1) − w, where v′i > 0, etc. Let, ψ(t) be the cost of effort
function. Assume, only q1 is measurable and contract is linear. So, w = s1q1 + t.
Let

π1 = max
t1
{v1(t1)− ψ(t1)}

π2 = max
t2
{v2(t2)− ψ(t2)}

π12 = max
t1,t2
{v1(t1) + v2(t2)− ψ(t)}

Proposition 1 Suppose, P own the assets, ψ(.) = ψ(t1 + t2) and the Agent’s
choice meets t1 + t2 = t̄. Under this conditions, if π12 ≥ max{π1, π2}, then
s1 = 0.

Note s1 > 0 ⇒ t2 = 0 and t1 will solve t1 = t̄. Moreover, the P’s profit will be
v1(t̄)− ψ(t̄)− r

2
s2

1σ
2
1. However,

v1(t̄)− ψ(t̄)− r

2
s2

1σ
2
1 < π1 ≤ π12.

2See for example Williamson (1985).
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In contrast, if s1 = 0, the Agent will be indifferent among various possible com-
binations of t1 and t2, so will choose the one that gives π12.

Alternatively, suppose P own the assets, ψ(.) = ψ(t1 + t2) and the Agent’s
choice meets the following condition; for some t̄ > 0, ψ′(t̄) = 0, and ψ

′′
(t) > 0.

Under this conditions, the Agent will choose t1 + t2 = t̄ and does not mind the
exact proportion. For such a context, the following holds:

Proposition 2 If V ′() > 0 and V (t1, 0) = 0, i.e., the second task is essential,
then the optimum s1 = 0.

Next, suppose we do not insist on condition t1 +t2 = t̄; suppose the Agent can
choose ti ∈ R+. Again s1 > 0 ⇒ t2 = 0 and t1 will solve ψ′(t1) = s1. Moreover,
the P’s profit will be v1(t1(s1))− ψ(t1(s1))− r

2
s2

1σ
2
1.

Exercise 2 Suppose the benefit of t2 is enjoyed by the Agent (alternatively, sup-
pose the Agent owns the assets). Find out the conditions under which optimum
s1 > 0.
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