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1 Introduction

A representative household has a unit endowment of labor time every period,

of which it can choose nt labor. It values only consumption every period,

and wishes to choose (Ct)
∞
0 to attain

sup
∑∞

t=0 β
tU(Ct)

subject to

Ct + it ≤ F (kt, nt) (1)

kt+1 = (1− δ)kt + it, k0 given. (2)

U ′ > 0, so replace ≤ with = in Eq. (1).

Since leisure gives no utility, nt = 1 for every t.

Let f(kt) = F (kt, 1) + (1− δ)kt. Then (1) + (2) yields a single constraint

for each period t. Also, Ct = f(kt)− kt+1. And we can rewrite the problem

as:

Choose (kt+1)∞0 to attain

sup
∑∞

t=0 β
tU(f(kt)− kt+1) (3)

subject to 0 ≤ kt+1 ≤ f(kt), t = 0, 1, 2, . . ., k0 given (4)

This is a sequences problem or SP. It’s a special case of the SP Problem

below: Let the states xt ∈ X, and let Γ(x) be the set of feasible choices of

state, from state x.

(SP) sup
(xt+1)∞0

∞∑
t=0

βtF (xt, xt+1)

subject to xt+1 ∈ Γ(xt), t = 0, 1, 2, . . . , x0 ∈ X given

2 Bellman’s Equation

Let v∗(x0) be the value function for SP. We want to talk about the relation-

ship between SP, and the functional equation FE below.
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FE v∗(x) = sup
y∈Γ(x)

[F (x, y) + βv∗(y)] , ∀x ∈ X

The value function of SP satisfies FE under much more general assump-

tions that in the Lemma below. But we then show that under these assump-

tions, a solution to FE exists and is unique, so if we solve FE, we will have

derived the value function for the original SP problem. Moreover, it can be

shown that the optimal policy function can be obtained as the argmax of

FE.

Lemma 1 Suppose 0 < β < 1, F is bounded, and Γ(x) is nonempty for all

x ∈ X. Let v∗ : X → < be the value function for SP. The v∗ satisfies FE

(the Bellman Equation).

Proof. Note that since F is bounded and 0 < β < 1, v∗(x) is a real

number for every x ∈ X.

(i) For all x ∈ X, v∗(x) ≥ F (x, y) + βv∗(y), for all y ∈ Γ(x).

Indeed pick any ε > 0 and any y ∈ Γ(x). By the sup definition of v∗(y),

there must exist a feasible sequence (y, x2, x3, . . .) that gives payoff arbitrarily

close to v∗(y), i.e.

u(y, x2, . . .) ≡
∞∑
t=0

βtF (xt+1, xt+2) ≥ v∗(y)− ε

where xt+1 = y for t = 0. So, the feasible sequence (x, y, x2, x3, . . .) gives

payoff

∞∑
t=0

βtF (xt, xt+1) = F (x, y) + βu(y, x2, . . .) ≥ F (x, y) + βv∗(y)− βε

where x0 = x, x1 = y. So we have
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v∗(x) ≥
∞∑
t=0

βtF (xt, xt+1) ≥ F (x, y) + βv∗(y)− βε

and (i) follows since ε is arbitrary.

(ii) For all ε > 0, there exists y ∈ Γ(x) s.t.

v∗(x)− ε ≤ F (x, y) + βv∗(y).

Indeed, since v∗(x) is a supremum, there exists a feasible sequence (x, y, x2, . . .) ≡
(x0, x1, x2, . . .) satisfying the first inequality below.

v∗(x) − ε ≤
∑∞

t=0 β
tF (xt, xt+1) = F (x, y) + β

∑∞
t=0 β

tF (xt+1, xt+2) ≤
F (x, y) + βv∗(y).

The result follows from (i) and (ii).

To show that there is a unique v that solves FE, the Bellman Equation

(so that by the above lemma, it must be that this v = v∗ above), we use the

following, heavily used, intermediate result due to Blackwell.

Theorem 1 (Blackwell). Let M ⊂ bU s.t. u ∈ M and a ∈ [0,∞) ⇒

u + a ∈ M (where u + a is the function defined by u(x) + a,∀x ∈ U). Let

T : M → M be an operator satisfying (i) Monotonicity: u ≤ v ⇒ Tu ≤ Tv,

and (ii) Discounting: There exists λ ∈ [0, 1) s.t. ∀u ∈ M and a ∈ [0,∞),

T (u+ a) ≤ Tu+ λa. Then T is a uniformly strict contraction with modulus

λ on the metric space (M,d∞).

Proof of Blackwell’s theorem. Interpret the inequalities as holding

pointwise for all x ∈ U .

u(x) = v(x) + u(x)− v(x) ≤ v(x) + |u(x)− v(x)| ≤ v(x) + ||u− v||∞.

Since T is monotone, applying it to both sides we have

Tu ≤ T (v + ||u− v||∞) ≤ Tv + λ||u− v||∞.

The last inequality is due to the discounting property of T .

Thus Tu− Tv ≤ λ||u− v||∞.

Reversing the roles of u and v, we get

Tv − Tu ≤ λ||u− v||∞.
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Combining the two, |Tu− Tv| ≤ λ||u− v||∞.

Since this inequality holds when the left hand is evaluated at arbitrary

x ∈ U , it holds for the sup. Thus

||Tu− Tv||∞ ≤ λ||u− v||∞.

That is, T is a uniformly strict contraction.

Now for the uniqueness result.

Theorem 2 Let X ⊂ <l be convex, and Γ : X → X be nonempty, compact-

valued and continuous. Let F : gr(Γ) → < be bounded and continuous, and

0 < β < 1. Then the operator T on bcX, the space of bounded continuous

functions on X, given below

(Tf)(x) = max
y∈Γ(x)

[F (x, y) + βf(y)]

maps into bcX, has a unique fixed point v ∈ bcX, and for all v0 ∈ bcX,

||T nv0 − v||1 → 0 as n→∞.

Proof. For each x ∈ X, the RHS is a maximization problem over the

compact set Γ(x); the max exists by continuity. Since F and f are bounded,

so is Tf . And since F and f are continuous and Γ is a compact-valued, con-

tinuous correspondence, Tf is continuous by the Theorem of the Maximum.

SO, T : bcX → bcX.

Note that T also satisfies monotonicity and discounting and so is a uni-

formly strict contraction with modulus β. Moreover, bcX is a complete metric

space. So the result follows from Banach’s contraction mapping theorem.

Remarks.

(1). For the representative agent growth model that we started with, the

Bellman Equation is:

v∗(k) = max
0≤y≤f(k)

[U(f(k)− y) + βv∗(y)]
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Suppose the optimizing value of y is σ(k). Clearly, it can only depend

on the initial capital stock k at the beginning of the time period. And not

otherwise on the entire history preceding k. Thus it is in fact optimal to

choose today’s action as a function only of the current state.

(2) For ease of notation, call v∗ simply v. Suppose v is differentiable.

And suppose σ(k) is an interior max. Then the first order condition for

the Bellman problem, obtained by differentiating the RHS wrt y, and then

setting y = σ(k), is:

U ′[f(k)− σ(k)] = βv′(σ(k))

This says that at the optimum, the marginal utility of consuming current

output equals the marginal value of allocating it to capital and enjoying

higher consumption next period on.

An envelope theorem due to Benveniste and Scheinkman also holds, which

says that to obtain v′(k), we can differentiate both sides of Bellman’s equation

wrt k, ignoring the second-order changes on the optimal choice of y. And

then replace y with σ(k). So,

v′(k) = f ′(k)U ′[f(k)− σ(k)]

In applications, we may use this condition in the FOC to get an Euler

equation.
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