Public Goods: Public Vs Private Provisioning

Ram Singh

April 22, 2015
Question
Can we apply the model of incomplete contracts to discuss the ownership and provisions of public goods and service?

Yes.

We can think of the above model as a model of provision of public good/service

- Suppose M1 is a govt official
- Suppose M2 is a private individual
- ‘Widget’ is public good/service
 - Prison, hospital, road, airport
- Non-integration as privatization (private ownership) of a2
M2 owns a2

Type-1 integration as nationalization (public/govt ownership) of a2

Govt owns a2

M2 is govt employee

PRT would predicts that:

- M2 would undertake greater number of innovations if he owns a2 rather than when he is govt employee

But,

- M1 may not undertake greater number of innovations if govt owns a2, compared to the case when a2 is owned by M2 (private individual)
In real world:

- The provision of Public good requires M2 to undertake multiple tasks; Specifically,
 - Building of the project facility
 - O&M of the project facility
- Procurement Contract determines the level of delegation
 - The domain of decision making delegated to private sector
- Depending of the tasks delegated to him, M2 may be able to undertake several types of innovations
- Levels of these innovations will depend whether if he owns a2 not
- Some of the innovations could be socially undesirable
Procurement Contracts

- Procurement Contracts are used for provisions of public goods such as road and railways services, school.

- Provision public goods requires procurement/building of assets - road, school building, etc.

- A Procurement Contract specifies responsibilities, rights and compensation mode for the contractor.

- Allocates construction, maintenance, and commercial risks between contracting parties.

- Procurement Contracts differ in terms of delegation of decision making power and risk allocation b/w public and private sector.
Traditional Contracts Vs PPPs: Risk Allocations

- **Traditional Procurement:**
 - Contractor builds the pre-designed good
 - *Per-unit* cost risk mostly borne by the contractor
 - Work quantities related risk mostly borne by the Govt.
 - Contractor does not bear any O/M cost and related risk

- **PPP:**
 - Contractor designs, builds and maintains the good (D-B-F-O-M)
 - All of Construction cost related risks are borne by contractor by contractor
 - Contractor bears all O/M costs are risks risk
 - PPP delegates more decision rights to the contractor
Traditional Contracts Vs PPPs: Comparison of Outcomes

We

- Compare the incentive structures generated by PPP contracts with the one induced by Tradition Procurement Contracts
- Compare the actual construction cost for PPP contracts with Non-PPP Contracts

Main Claims

- PPP Contracts induce lower Life-cycle costs of project
- PPP Contracts induce relatively high Construction Costs
- Relatively high Construction Costs in PPP projects are attributable to non-contractible quality investments/efforts
Approach

- We model construction costs under PPPs and TP contracts
- we compare the costs ratio

\[CO = \frac{C^a}{C^e} = \frac{\text{Actual project cost}}{\text{Estimated project cost}} \]

The above claims are corroborated by showing that:

- *Ceteris paribus*, \(\frac{C^a}{C^e} \) is significantly higher for PPPs
Model: Project Design I

Project Design requires three tasks:

- Description of ‘output’ features of the project facility/assets
- Description/listing of the work-items
- Estimation of the number of the quantities of the work-items and their per-unit cost

For a given project, let

- d denote the effort in project designing
- $[0, \overline{W}], \ 0 < \overline{W}$ be the set of total work-items needed to be performed
- W be the number of works covered by the initial design; $W = W(\tau, l, d)$, where
- l denotes experience of the designers with project planning; and
- τ denotes technical complexity of the project.
Model: Project Design II

- \(W(\tau, l, 0) = 0, \ W(\tau, l, \infty) = \bar{W}, \)
- \(\frac{\partial W(\tau, l, d)}{\partial d} > 0 \)
- \(\frac{\partial W(\tau, l, d)}{\partial l} > 0 \)
- \(\frac{\partial W(\tau, l, d)}{\partial \tau} < 0 \)

As a result of \(d \), the designer

- specifies works \([0, W]\), and
- gets \(C_{[0, W]}^e \) as the signals of \(C_{[0, W]}^a \), where

\[
C_{[0, W]}^e = C_{[0, W]}^a + \epsilon
\]

Assume

\[
E(\epsilon) = 0
\]
The actual Construction Cost depends on

- the cost of inputs (material, labour, capital, etc); and
- various non-contractible efforts/investment made by the builder contractor

 - a organizational effort before construction starts
 - e cost reducing but quality-shading effort
 - i quality improving effort
- e and i are put during construction.
For given a, e and i,

$$C_{[0,\bar{w}]}^a(a, e, i) = C_{[0,\bar{w}]}^0 - \kappa^1(a) - \kappa^2(e) + \kappa^3(i),$$

where

$$\frac{\partial \kappa^1(a)}{\partial a} > 0, \quad \& \quad \frac{\partial^2 \kappa^1(a)}{\partial a^2} < 0.$$

$$\frac{\partial \kappa^2(e)}{\partial e} > 0, \quad \& \quad \frac{\partial^2 \kappa^2(e)}{\partial e^2} < 0.$$

$$\frac{\partial \kappa^3(i)}{\partial i} \geq 0, \quad \& \quad \frac{\partial^2 \kappa^3(i)}{\partial i^2} \geq 0.$$
Actual Costs III

For any given level of a, e and i, the actual construction costs of all works, $C^a_{[0,W]}$, is given by

$$C^a_{[0,W]} = C^a_{[0,W]} + C^a_{(W,W)}$$ (0.2)

So,

$$\frac{C^a_{[0,W]}}{C^e_{[0,W]}} = \frac{C^a_{[0,W]}}{C^e_{[0,W]}} + \frac{C^a_{(W,W)}}{C^e_{[0,W]}}$$ (0.3)

In view of (0.1), for given $C^e_{[0,W]}$,

$$E \left[\frac{C^a_{[0,W]}}{C^e_{[0,W]}} \right] = 1 + \frac{C^e_{(W,W)}}{C^e_{[0,W]}}$$ (0.4)
Actual Costs IV

Proposition

\[E \left[\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right] \geq 1. \]

\[\frac{\partial E \left[\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right]}{\partial d} < 0, \quad \frac{\partial E \left[\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right]}{\partial l} < 0, \quad \frac{\partial E \left[\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right]}{\partial \tau} > 0. \]

Therefore, for given \(l \) and \(\tau \),

\[\left(\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right)^{PPP} > \left(\frac{C^a_{[1, \bar{W}]} - C^e_{[1, \bar{W}]}}{C^e_{[1, \bar{W}]}} \right)^{TP} \]

can hold because

- Either \(d \) is lower for PPPs;
- Or, on account of differences in \(a, e \) and \(i \)
The total Construction costs is

\[C^a_{[0,W]} + a + e + i \]

\[C^0_{[0,W]} - \kappa^1(a) - \kappa^2(e) + \kappa^3(i) + a + e + i \]

Let

\[\Phi(e, i) \] denote the O/M costs.

The total life cycle costs - total cost construction cost plus O& M cost - will be

\[C_{[0,W]} = C^a_{[0,W]} + \Phi(e, i) \]

\[= [C^0_{[0,W]} - \kappa^1(a) - \kappa^2(e) + \kappa^3(i)] + \Phi(e, i) \]

\[+ a + e + i \] (0.5)
Optimization Problems I

For any given d and $C_{[1,W]}^e$, the total cost (construction plus O&M) minimization problem is:

$$\min_{a,e,i} \{ \Phi(e, i) - [\kappa_1(a) + \kappa_2(e) - \kappa_3(i)] + a + e + i \}.$$

The total cost minimizing efforts a^*, e^* and i^* solve the following necessary and sufficient first order conditions, respectively and simultaneously:

$$\frac{\partial \kappa_1(a)}{\partial a} \leq 1 \quad (0.6)$$
$$\frac{\partial \kappa_2(e)}{\partial e} - \frac{\partial \Phi(e, i)}{\partial e} \leq 1 \quad (0.7)$$
$$- \frac{\partial \kappa_3(i)}{\partial i} - \frac{\partial \Phi(e, i)}{\partial i} \leq 1. \quad (0.8)$$
Optimization Problems II

We assume
\[a^* > 0, \ e^* = 0, \ & i^* > 0. \]

On the other hand, a construction cost minimization problem is

\[
\min_{a,e,i} \left\{ - \left[\kappa^1(a) + \kappa^2(e) - \kappa^3(i) \right] + a + e + i \right\}
\]

Let \((a^{**}, e^{**}, i^{**})\) be solution to the above optimization problem. Now, it can be seen that \(i^{**} = 0\), and \(a^{**}\) and \(e^{**}\) will solve the following first order conditions:

\[
\frac{\partial \kappa^1(a)}{\partial a} \leq 1 \]
\[
\frac{\partial \kappa^2(e)}{\partial e} \leq 1.
\]

Clearly, \(a^{**} = a^*\). Assume \(e^{**} > 0\).
Under PPP, the contractor solves

$$\max_{a,e,i} \left\{ P^{PP} - \left[\Phi(e, i) - (\alpha^{PP} \kappa^1(a) + \kappa^2(e) - \kappa^3(i)) \right] + a + e + i \right\}$$

where

$$0 \leq \alpha^{PP} \leq 1$$

and depends on the decision rights delegated to the contractor.

We have $e^{PP} = e^*$ and $i^{PP} = i^*$, and a^{PP} solves the following first order condition:

$$\frac{\partial \kappa^1(a)}{\partial a} \leq 1$$
Contracts and Equilibria II

On the other hand, under TP, the contractor solves

\[
\max_{a,e,i} \left\{ p^{TP} - [\alpha^{TP} \kappa_1(a) + \kappa_2(e) - \kappa_3(i)] - [a + e + i] \right\}
\] \(0.10\)

Assume \(\alpha^{TP} < \alpha^{PP}\).

\[
\begin{align*}
 i^{PP} &= i^* > i^{TP} = i^{**} = 0 ; \\
 e^{PP} &= e^* = 0 < e^{**} = e^{TP} . \\
 a^{TP}(\alpha^{TP}) &= a^{PP}(\alpha^{PP}) \leq a^* .
\end{align*}
\] \(0.11\)
Cost Comparisons I

Proposition

For any given d and $C_{[1,w]}^{e}$:

\[C_{PPP}^{a} < C_{UR}^{a} \]

Proposition

For any given d, and $C_{[1,w]}^{e}$:

\[a^{TP} = a^{PP} \implies \left(\frac{C_{PPP}^{a}}{C_{e}^{a}} \right)^{PP} > \left(\frac{C_{PPP}^{a}}{C_{e}^{a}} \right)^{TP} \]

\[e^{TP} = e^{PP} \text{ and } i^{TP} = i^{PP} \implies \left(\frac{C_{PPP}^{a}}{C_{e}^{a}} \right)^{PP} < \left(\frac{C_{PPP}^{a}}{C_{e}^{a}} \right)^{TP} \]

However, $a^{TP} < a^{PP}$, $e^{TP} > e^{PP}$ and $i^{TP} < i^{PP}$. Therefore,
Cost Comparisons II

- \((\frac{Ca}{Ce})^{PPP} \geq (\frac{Ca}{Ce})^{TP}\) is possible

- But, if it turns out that \((\frac{Ca}{Ce})^{PPP} > (\frac{Ca}{Ce})^{TP}\) then it must be on account of differences in \(e\) and \(i\)

- Moreover, the actual cost difference b/w PPPs and TPs on account of \(e\) and \(i\) is greater than what data will show
DATA: NHAI

- National highways (NH) projects, sponsored by the National Highways Authority of India (NHAI);
- All over India;
- Completed 1995 onwards.
- All projects: 453
 - PPPs 176
 - Non-PPPs/IR 277
- Completed Projects: 195
 - PPPs 50
 - Non-PPPs/IR 145
Higher $\frac{C^a}{C^e}$ for PPPs: Other possible reasons

However, $\frac{C^a}{C^e}$ can be higher for PPPs for the following reasons:

- **At Project Designing/Contracting Stage:**
 - Purposeful Under-estimation of C^e for PPPs
 - Choice of PPPs by Department
 - Choice of PPPs by contractors - Endogeneity

- **During Construction Stage:**
 - Ex-post addition to works for PPP projects
 - Trade-off between Construction Costs and completion Time;
 - Lower $\frac{T^a}{T^e}$ can increase $\frac{C^a}{C^e}$
 - Lower $\frac{T^a}{T^e}$ can decrease $\frac{C^a}{C^e}$; inflation, etc

- **Trade-off between Construction Costs and O&M Costs**
Empirical Framework

\[\frac{C^a}{C^e} = CO = \alpha_0 + \alpha_1 \text{TIMELAPSE}_t + \alpha_2 \text{TIMELAPSE}_t^2 + \alpha_3 \text{INITIALCOST}_t + \alpha_4 \text{IMPLPHASE}_t + \alpha_5 \text{DPPP}_t + \alpha_6 \text{PSGDP}_t + \alpha_7 \text{TO}(\frac{T^a}{T_e}) + \epsilon_{2t} \]

Hypothesis

Ceteris paribus, average cost overruns, i.e., \(\frac{C^a}{C^e} = CO \)

- are higher for PPP projects;
- decrease with experience/TIMELAPSE, i.e., \(t \);
- increase with TIME-OVERRUN, i.e., \(TO = (\frac{T^a}{T_e}) \);
- increase with IMPL-PHASE, i.e., \(\tau \);