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Moral Hazard in Teams: Model

Model I

Many agents; at least two agents

Effort on the part of each agent affects the output;

Effort is not observable or contractible;

Cost of effort by an agent is private

Risk-neutral parties

Example

Firm as Team and Profit as Output;

Cooperative (farm) as Team and Produce or profit as Output;

Sales-persons as Team and sales as Outputs;

Advocate as Team and Judicial judgement as Output
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Moral Hazard in Teams: Model

Model II

General Model: Holmstrom (1982, BJE)

n Agents; n ≥ 2

e = (e1, ...,en)

Output Q = (e1, ...,en),

Q =

{
(q1, ...,qn) ∈ Rn, or;
Q ∈ R, .

Agents are weakly risk-averse.

Team/partnership Contract: w(Q) = (w1(Q), ...,wn(Q)) where
wi (Q) = si (Q) is the output sharing rule such that si ≥ 0. Typically, we
have ∑

wi (Q) =
∑

si (Q) = Q.
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Unobservable Individual Output

Unobservable Individual Output I

Simple Model:

Q = Q(e1, ...,en) ∈ R is scalar deterministic output

Q is increasing and concave; for all i , j ,

∂Q
∂ei

> 0,
∂2Q
∂e2

i
< 0,

∂2Q
∂ei∂ej

≥ 0,

Matrix of second derivatives Qij is Negative Definite

Agent is risk neutral in wealth; ui (wi ,ei ) = ui (wi )− ψ(ei ) = wi − ψ(ei )
and ψ(ei ) is increasing and convex.

wi (Q) = si (Q) is continuously differentiable and

(∀Q)[
∑

wi (Q) =
∑

si (Q) = Q]
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Unobservable Individual Output

Unobservable Individual Output II

The first best is solution to

max
e1,...,en

{Q(e1, ...,en)−
∑

ψi (ei )}

s.t.
(∀Q)[

∑
wi (Q) = Q] (1)

Let e−i = (e1, ...,ei−1,ei+1, ...,en).

Therefore, the first best effort e∗i solves the following foc ∂Q(ei ,e∗−i )

∂ei
= ψ′(ei ), for

every i = 1, ...,n. That is, for every i = 1, ...,n

∂Q(e∗i ,e
∗
−i )

∂ei
= ψ′(e∗i ) (2)

Let e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) solve system 2.
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Unobservable Individual Output

Is First Best Achievable? I

In SB, e is not contractible but Q is

Given e−i = (e1, ...,ei−1,ei+1, ...,en), agent i solves

max
ei
{wi (Q(ei ,e−i )− ψ(ei )}.

Therefore, a (Nash) equilibrium is characterized by the following n equations

dwi (Q(ei ,e−i ))

dQ
∂Q(ei ,e−i )

∂ei
= ψ′(ei ), (3)

for every i = 1, ...,n.

Now e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) can solve (2) iff for every, we have

(∀i ∈ {1, ...,n})[
dwi (Q(e∗i ,e

∗
−i ))

dQ
= 1] (4)
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Unobservable Individual Output

Is First Best Achievable? II

But from 1, we have ∑ dwi (Q(e∗i ,e
∗
−i ))

dQ
= 1 (5)

4 and 5 give us a contradiction.
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Unobservable Individual Output

First Best with Budget Breaker I

Consider the following contract:

BB demands an upfront payment of zi and appropriate the output; and

pays (∀Q)[wi (Q) = Q] to each agent

Under this contract it is easy to see that

BB and each agent is a residual claimant on the entire output; and

e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) is a N.E.

Is such a contract feasible?
Yes, if for all i

Q(e∗1 , ...,e
∗
n)− ψi (e∗i ) ≥ zi , i .e.,

nQ(e∗1 , ...,e
∗
n)−

∑
ψi (e∗i ) ≥

∑
zi (6)

and ∑
zi + Q(e∗1 , ...,e

∗
n) ≥ nQ(e∗1 , ...,e

∗
n) (7)
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Unobservable Individual Output

First Best with Budget Breaker II

That is, if

Q(e∗1 , ...,e
∗
n)−

∑
ψi (e∗i ) > 0,

which is clearly true.

Is e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) a unique N.E.?

Suppose e−i = (0, ...,0). Agent i solves

max
ei
{Q(0, ..,ei , ...,0)− ψ(ei )}.

Assuming ∂Q(0,..,0,...,0)
∂ei

> ∂ψ(0)
∂ei

, the agent i will choose a positive effort. Now
∂2Q
∂ei∂ej

≥ 0 implies that other agents will also increase their effort. If
e∗ = (e∗1 , ...,e

∗
i , ...,e

∗
n) a unique optimizer, iteration will continue till they reach

e∗.
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Unobservable Individual Output

First Best without BB I

Consider the following ‘Mirrlees’ Contract:

wi (Q) =

{
bi ≥ 0, if Q = Q∗;
−ki , if Q 6= Q∗. where bi ≥ 0 and −ki < 0

BB pays bi if output Q = Q∗, where bi ≥ ψi (e∗i ); and

imposes penalty of ki if Q 6= Q∗

Can choose
∑

bi = Q∗

Do not need external intervention in equilibrium
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Unobservable Individual Output

First Best without BB II

Under this contract it is easy to see that e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) is a N.E.

Multiple equilibria:
Let êi solve

Q(0, ..., êi , ...,0) = Q(e∗1 , ...,e
∗
i , ...,e

∗
n)

Now if
bi − ψi (êi ) ≤ −ki (8)

holds (0, ...,0) is a N.E. If for some i ,

bi − ψi (êi ) > −ki (9)

there exist N.E. (ẽ1, ..., ẽi , ..., ẽn) such that for some j , ẽj < e∗j
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Unobservable Individual Output

Problematic Features I

Remark
Under Holmstrom scheme, the payoff of the BB is

wBB =
∑

zi + Q(e)−
∑

Q(e) =
∑

zi − (n − 1)Q(e), i .e.,

dwBB

dQ
= −(n − 1) < 0

Remark

Note the results do not depend on output being stochastic or

Risk aversion of agents

BB want the scheme to ‘fail’

BB may collude with one of the agents
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Unobservable Individual Output

Problematic Features II

A side contract between BB and an agent gives back original problem

Agents may collude to borrow Q∗ and game with BB
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First Best without Budget Breaker

Deterministic Output and Finite Effort Space I

Legros and Matthews (1993)
Let

Three agents, i = 1,2,3

Q = Q(e1,e2,e3)

ei ∈ {0,1}, i = 1,2,3

ψi (ei ) = ψi (1) > ψi (0) > 0, i = 1,2,3

The FB solves max{Q(e1,e2,e3)−
∑
ψi (ei )}

Let (e∗1 ,e
∗
2 ,e
∗
3) = (1,1,1)

Qi = Q(0,e−i ), where e−i = (1,1)

Q1 6= Q2 6= Q3, a generic feature
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First Best without Budget Breaker

Deterministic Output and Finite Effort Space II

Consider the following contract

wi (Q) =


w∗i if Q = Q∗;
Q
2 + δ if Q 6= Q∗ & Q 6= Q−i ;
−ki , if Q = Qi .

where w∗i = wi (Q∗)− ψi > 0 and

δ ≥ 0.

This contract implements the FB. However,

if Q1 = Q2 = Q3 the FB cannot be implemented.
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First Best without Budget Breaker

Approximating FB with Deterministic Output I

Legros and Matthews (1993) Let

Two agents, i = 1,2

Q = Q(e1,e2) = e1 + e2

ei ∈ [0,+∞), i = 1,2

ψi = ψi (ei ) =
e2

i
2 , i = 1,2

The FB solves

max{Q(e1,e2)e1,e2 −
∑

ψi (ei )} = max
e1,e2
{e1 + e2 −

e2
1

2
−

e2
2

2
}

Clearly (e∗1 ,e
∗
2) = (1,1)

Consider the following contract
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First Best without Budget Breaker

Approximating FB with Deterministic Output II

If Q ≥ 1{
w1(Q) = (Q−1)2

2 and ;
w2(Q) = Q − w1(Q).

If Q < 1
{

w1(Q) = Q + k and ;
w2(Q) = −k .

Proposition

Under the above contract if agent acts as ‘principal’, then ((ε,1− ε), (0,1)) is
a N.E. in which the first agent plays e = 0 and e = 1 with probability ε and
1− ε, respectively; and agent two plays e = 1 with probability one.

Proof: Given e2 = 1 opted by 2, agent 1 solves,

max
e1
{w1(e1 + 1)−

e2
1

2
} = max

e1
{

e2
1

2
−

e2
1

2
} = 0
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First Best without Budget Breaker

Approximating FB with Deterministic Output III
i.e., all effort levels are equally good. So, (ε,1− ε) is a best response for
agent 1. Note agent 2 will never opt for e2 > 1. Given that agent 1 opts for
(ε,1− ε), a choice of e2 = 1 gives agent 2,

(1− ε)[2− 1
2

] + ε[1− 0]− 1
2

= 1− ε

2
.

In contrast, when e2 < 1 agent 2’s payoff is,

(1− ε)[1 + e2 −
e2

2
2

]− εk −
e2

2
2
≤ 1 + e2 − e2

2 − εk ,

which is uniquely maximized at e2 = 1
2 . At e2

1
2 , agent 2’s payoff is

5
4
− εk

e2 = 1 is the best response for 2, if

k ≥ 1
2

+
1
4ε
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Risk-Averse Teams

Risk-Averse Team I

Q = Q(e1, ...,en) ∈ R is scalar deterministic output

Q is increasing and concave; for all i , j ,

∂Q
∂ei

> 0,
∂2Q
∂e2

i
< 0,

∂2Q
∂ei∂ej

≥ 0,

Matrix of second derivatives Qij is Negative Definite

Agents are risk-averse in wealth;

ũi (wi , si (Q),ei ) = ui (wi , si (Q))− ψi (ei ) = −eri si (Q) − ψi (ei )

and ψi (ei ) is increasing and convex.

(∀Q)[
∑

si (Q) = Q]
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Risk-Averse Teams

Risk-Averse Team II

The First Best:

max
e1,...,ei ,...,en;si

{
∑

ũi (si (Q),ei )}, i .e.,

max
e1,...,ei ,...,en;si

{
∑

[ui (si (Q))− ψi (ei )]}

s.t.
(∀Q)[

∑
si (Q) = Q]

Let e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) along with a sharing scheme s∗(Q) be the unique

F.B. profile in this context.
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Risk-Averse Teams

Risk-Averse Team III

Remark

For a sharing scheme si (Q) and a profile of efforts
(e1, ...,ei , ...,en) 6= (e∗1 , ...,e

∗
i , ...,e

∗
n), the following holds: There exists a

sharing scheme s∗(Q) such that

(∀i)[E(s∗i ,e
∗
i ) ≥ E(si ,ei )] (10)

(∃j)[E(s∗j ,e
∗
j ) > E(sj ,ej )] (11)

If a sharing scheme ŝi (Q) induces e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) as a N.E., then

for any sharing scheme si (Q) that induces (e1, ...,ei , ...,en), the following
cannot hold

(∀i)[E(si ,ei ) ≥ E(ŝi ,e∗i )] (12)
(∃j)[E(sj ,ej ) > E(ŝj ,e∗j )] (13)
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Risk-Averse Teams

Risk-Averse Team IV

If a sharing contract does not induce e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) as a N.E., it

cannot be F.B.

Therefore, a P.O. sharing scheme will necessarily induce
e∗ = (e∗1 , ...,e

∗
i , ...,e

∗
n) as a N.E.

We know that if agents are risk neutral, i.e., if u(x) = x , then no BB sharing
scheme can induce e∗ = (e∗1 , ...,e

∗
i , ...,e

∗
n) as a N.E.

Can a BB sharing scheme can induce e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) as a N.E. if

agents are risk-averse?
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Risk-Averse Teams

Risk-Averse Team V

Consider the following BB ‘Scapegoat’ sharing contract:

If Q = Q(e∗), then si (Q) = b∗i , where b∗i s are such that
∑

b∗i = Q(e∗);

If Q > Q(e∗), then si (Q) = b∗i + Q−Q(e∗)
n

If Q < Q(e∗), choose one agent j randomly and fix shares such that

sj (Q) = −wj

(∀i 6= j) si (Q) = b∗i +
b∗j + wj + Q −Q(e∗)

n − 1
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Risk-Averse Teams

Risk-Averse Team VI

Remark

Note when Q < Q(e∗),

n∑
i=1

si (Q) = sj (Q) +
n∑

i 6=j

si (Q) = −wj +
n∑

i 6=j

[b∗i +
b∗j + wj + Q −Q(e∗)

n − 1
] = Q.

Therefore, the above contract meets the BB constraint.

Suppose, e−i = e∗−i , i.e., all agents apart from i have opted for FB effort. If i
opts for e∗i , his payoff is ui (b∗i )−ψi (e∗i ). If he opts for some ei > e∗i , his payoff
is

ui (b∗i +
Q −Q(e∗)

n
)− ψi (ei ).

Since e∗ is P.O. profile,

ui (b∗i +
Q −Q(e∗)

n
)− ψi (ei ) > ui (b∗i )− ψi (e∗i )
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Risk-Averse Teams

Risk-Averse Team VII

cannot hold.

Now, if i opts for some ei < e∗i , his share

si (Q) =

{
−wi with probability 1

n ;
b∗i + zi with probability 1−n

n ,

where zi is a random variable.

For each j 6= i , probability of zi = bi +
bj+wj+Q−Q(e∗)

n−1 is 1
n−1 . Therefore, if i opts

for some ei < e∗i , his payoff is

n − 1
n

Eui (b∗i + zi ) +
1
n

u(−wi )− ψi (ei ) (14)

n − 1
n

[
n∑

i 6=j

1
n − 1

ui (b∗i + zi )] +
1
n

u(−wi )− ψi (ei ) (15)
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Risk-Averse Teams

Risk-Averse Team VIII

For ei < e∗i , agent i ’s payoff function is concave. Let êi uniquely solve in
region ei < e∗i . Now let

Yi = ui (b∗i )− ψi (e∗i )− [
n − 1

n
Eui (b∗i + zi ) +

1
n

u(−wi )]− ψi (êi ) (16)

Clearly, if Yi > 0, e∗i is a unique best response for agent i .
Now, using envelop theorem

dYi

dwi
=

1
n

u′i > 0 (17)

Moreover, concavity of ui implies

d2Yi

dw2
i

= −1
n

u′′ i > 0 (18)
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Risk-Averse Teams

Risk-Averse Team IX

That is Yi is increasing in wi at an increasing rate. So, there exits w̄i such that
for all wi ≥ w̄i , Yi > 0. That is, for all wi ≥ w̄i , e∗i is a unique best response to
e∗−i . Therefore,

Proposition

If w̄i is sufficiently large for all i , then e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) is a N.E.

Proposition

If ri is sufficiently large for all i , then e∗ = (e∗1 , ...,e
∗
i , ...,e

∗
n) is a N.E.

Proof: Rewriting

Yi = ui (b∗i )− ψi (e∗i )− [
n − 1

n
Eui (b∗i + zi ) +

1
n

u(−wi )− ψi (êi )]

as
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Risk-Averse Teams

Risk-Averse Team X

Yi = ui (b∗i )− ψi (e∗i )− [
n − 1

n
[

n∑
i 6=j

1
n − 1

ui (b∗i + zi )] +
1
n

u(−wi )− ψi (êi )]

i.e., as

Yi = −e−ri b∗i − ψi (e∗i )

+
1
n

(
∑
i 6=j

e−ri{b∗i + 1
n−1 [bj+wj−Q(e∗)+Q(êi ,e∗−i )]}) (19)

+
1
n

eri wi + ψi (êi )

Note as ri goes up, the first and the third terms approach zero. The second
term is unaffected and the fifth one is bounded by ψi (0) and ψi (e∗i ). But, the
fourth term exploded towards infinity. Therefore, for sufficiently large ri , Yi > 0
holds. Again, e∗ = (e∗1 , ...,e

∗
i , ...,e

∗
n) is a N.E.
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Risk-Averse Teams

Scapegoats Versus Massacres

When agents are identical, the ‘scapegoat’ contract is:

si (Q) =


Q
n if Q ≥ Q(e∗);
Q+w
n−1 with probability n−1

n if Q < Q(e∗);
−w with probability 1

n if Q < Q(e∗).

When agents are identical, the ‘massacre’ contract is:

si (Q) =


Q
n if Q ≥ Q(e∗);
Q + (n − 1)w with probability 1

n if Q < Q(e∗);
−w with probability n−1

n if Q < Q(e∗).

Reference: Rasmusen (1984, RJE)
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