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Extended Model I

x care level as well as the cost of care for the injurer,

y care level as well as the cost of care for the victim,

s activity level for the injurer,

t activity level for the victim,

X = {x | x is some feasible level of care for the injurer },

Y = {y | y is some feasible level of care for the victim},

S = {s | s is some feasible level of activity for the injurer },

T = {t | t is some feasible level of activity for the victim},

u(s, x) the benefit function for the injurer,

v(t , y) the benefit function for the victim,

π the probability of accident,
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Extended Model II

D the loss suffered by the victim in the event of an accident, D ≥ 0.

L the expected accident loss.

Social benefits from the activity of a party are fully internalized by that
party.

u(s, x) = u(s)− sx , v(t , y) = v(t)− ty , and
L(s, x , t , y) = stπ(x , y)D(x , y) = stl(x , y).

So, the social optimization problem is given by:

max
(s,x,t,y)∈S×X×T×Y

u(s, x) + v(t , y)− L(s, x , t , y), i .e.,

max
(s,x,t,y)∈S×X×T×Y

u(s)− sx + v(t)− ty − stl(x , y). (0.1)

Let

((s∗, x∗), (t∗, y∗)) uniquely solve (0.1)

Ram Singh (DSE) Course 604 September 10, 2015 3 / 17



Extended Model III
((s∗, x∗), (t∗, y∗)) >> ((0,0), (0,0))

Therefore, s∗, x∗, t∗, and y∗ simultaneously and respectively solve the
following necessary and sufficient first order conditions:

u′(s)− x − tl(x , y) = 0 (0.2)
1 + tlx(x , y) = 0 (0.3)

v ′(t)− y − sl(x , y) = 0 (0.4)
1 + sly (x , y) = 0 (0.5)

That is, s∗, x∗, t∗, and y∗ simultaneously and respectively satisfy the
following:

u′(s) = x∗ + t∗l(x∗, y∗) (0.6)
0 = 1 + t∗lx(x , y∗) (0.7)

v ′(t) = y∗ + s∗l(x∗, y∗) (0.8)
0 = 1 + s∗ly (x∗, y) (0.9)
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Extended Model IV

x and y are verifiable but s and t are not

The legal due care standard (i.e., the negligence standard) for the
injurer, is set at x∗. Similarly, the legal negligence standard of care for
the victim, is set at y∗.

A liability rule is a function wX :

wX : X × Y 7→ [0,1]
such that; 0 ≤ wX (x , y) ≤ 1, and wX (x , y) + wY (x , y) = 1, i.e.,
wY (x , y) = 1− wX (x , y).
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Impossibility of Efficient Outcome I

For given (t , y) ∈ T × Y opted by the victim and the liability rule in force, the
problem facing the injurer is

max
(s,x)∈S×X

u(s)− sx − wX (x , y)stl(x , y). (0.10)

Likewise, given (s, x) ∈ S × X opted by the injurer, the problem facing the
victim is

max
(t,y)∈T×Y

v(t)− ty − (1− wX (x , y))stl(x , y), (0.11)

To see why no liability rule is efficient. Consider a liability rule. Suppose it
induces an equilibrium in which the injurer opts for x∗ and the victim opts for
y∗ - otherwise there is nothing to prove.

Now, given the equilibrium choice of x∗ by the injurer and of y∗ by the victim,
the injurer will choose s to solve

max
s
{u(s)− sx∗ − wX (x∗, y∗)stl(x∗, y∗)},
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Impossibility of Efficient Outcome II

Similarly, the victim will choose t that satisfies

max
t
{v(t)− ty∗ − (1− wX (x∗, y∗))stl(x∗, y∗).}

So, in equilibrium, s and t will satisfy (0.12) and (0.13), respectively.

u′(s) = x∗ + wX (x∗, y∗)tl(x∗, y∗) (0.12)
v ′(t) = y∗ + (1− wX (x∗, y∗))sl(x∗, y∗), (0.13)

In view of (0.6) and (0.8), s∗ and t∗ will solve (0.12) and (0.13) only if
wX (x∗, y∗) = 1 and simultaneously (1− wX (x∗, y∗)) = wY (x∗, y∗) = 1 holds.
However, under a liability rule this is impossible.
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An Efficient Mechanism I

Consider the following mechanism:

(∀(x , y) ∈ X × Y )[wX (x , y) = 1 and wY (x , y) = 1]

That is, regardless of the care choice made by the two parties, both are
required to bear full accident loss. For example,

the injurer is required to deposit a fine equal to accident loss

at the same time, the victim is not provided any compensation

Under such a mechanism, the injurer will solve

max
s,x
{u(s)− sx − wX (x , y)stl(x , y)},

Similarly, the victim will choose t that satisfies

max
t
{v(t)− ty − wY (x , y)stl(x , y).}
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An Efficient Mechanism II

So, the equilibrium is characterized by the following first order conditions:

u′(s)− x − tl(x , y) = 0 (0.14)
1 + tlx(x , y) = 0 (0.15)

v ′(t)− y − sl(x , y) = 0 (0.16)
1 + sly (x , y) = 0 (0.17)

which are same as the system (0.2)- (0.5). So, s∗, x∗, t∗, and y∗ will be opted
simultaneously.
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Predicting the Outcome I

Property (P1):

[(x ≥ x∗& y < y∗ ⇒ wX = 0) and (x < x∗& y ≥ y∗ ⇒ wX = 1)].

Lemma
Under a liability rule satisfying (P1),
(∀((s, x), (t , y))) [x < x∗ & y < y∗ ⇒ ((s, x), (t , y)) cannot be a N.E. ].

Take any ((s, x), (t , y)) such that x < x∗ and y < y∗. Suppose, the injurer
opts for (s, x) and the victim for (t , y).

At at ((s, x), (t , y)), the expected payoff of the victim is

v(t)− ty − (1− wX (x , y))stl(x , y).

On the other hand, if the victim instead opts for (t∗, y∗), then his payoff will be
v(t∗, y∗).
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Predicting the Outcome II

Similarly, at ((s, x), (t , y)) the expected payoff of the injurer is
u(s)− sx − wX (x , y) stl(x , y). But, if the injurer instead opt for (s∗, x∗), his
payoff will be u(s∗, x∗).

At ((s, x), (t , y)) if

u(s∗, x∗) > u(s)− sx − wX (x , y) stl(x , y),

((s, x), (t , y)) cannot be a N.E. Therefore, assume that

u(s)− sx − wX (x , y) stl(x , y) ≥ u(s∗, x∗). (0.18)

Since ((s, x), (t , y)) 6= ((s∗, x∗), (t∗, y∗)), by assumption, we know that

u(s∗, x∗)+v(t∗, y∗)−L(s∗, x∗, t∗, y∗) > u(s)−sx+v(t)− ty−stl(x , y). (0.19)
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Predicting the Outcome III

Subtracting u(s∗, x∗) from the LHS and u(s)− sx − wX (x , y)stl(x , y) from the
RHS of (5), in view of (4), we get

v(t∗, y∗)− L(s∗, x∗, t∗, y∗) > v(t)− ty − (1− wX (x , y))stl(x , y). (0.20)

Now, since L(s∗, x∗, t∗, y∗) ≥ 0, from (6) we have

v(t∗, y∗) > v(t)− ty − (1− wX (x , y))stl(x , y).

Again, ((s, x), (t , y)) cannot be a N.E.

Lemma
Under a liability rule satisfying (P1),
(∀((s, x), (t , y))) [x > x∗ & y < y∗ ⇒ ((s, x), (t , y)) cannot be a N.E. ].
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Predicting the Outcome IV

Lemma
Under a liability rule satisfying (P1),
(∀((s, x), (t , y))) [x < x∗ & y > y∗ ⇒ ((s, x), (t , y)) cannot be a N.E. ].

Remark

The above results hold for any general u(s, x), v(t , y) and L(s, x , t , y)
functions, subject to usual assumptions.

Theorem

Suppose L(s, x , t , y) = stl(x , y). Under a liability that satisfies Property (P1),
(∀((s, x), (t , y))) [((s, x), (t , y)) is a N.E. ⇒ (x ≥ x∗& y ≥ y∗)].

Property (P2):

(∀x ∈ X )(∀y ∈ Y )[x ≥ x∗&y ≥ y∗ ⇒ wX (x , y) = wX (x∗, y∗) = w∗X ].
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Equilibrium under Standard Liability Rules I

Miceli ( 1997 p. 29), Cooter and Ulen (2004, pp. 332-33), Dari Mattiacci
(2002), Parisi and Fon (2004), among others, assume L(s, x , t , y) = stl(x , y).

These studies argue that:
the injurer and the victim opt for x∗ and y∗, respectively

under the rule of negligence

under the rule of negligence with the defense of contributory negligence

under the rule of strict liability with the defense of contributory negligence
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Equilibrium under Standard Liability Rules II

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with w∗X ∈ {0,1}:
Under the rule:
((s, x), (t , y)) is a N.E.⇒ (x 6= x∗ or y 6= y∗)

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with w∗X ∈ {0,1},
Under the rule: when w∗X = 0, for some y > y∗ & t < t∗, ((s∗p , x∗), (t , y)) is a
N.E. (s∗p > s∗)

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with w∗X ∈ {0,1},
Under the rule:
when w∗X = 1, for some s < s∗ & x > x∗, ((s, x), (t∗p , y∗)) is a N.E. (t∗p > t∗)
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Equilibrium under Standard Liability Rules III

Suppose, ((s, x), (t , y)) is a N.E. under the rule.

if x 6= x∗, there is nothing to prove.

so, let x = x∗.

w∗X = 0, in view of Properties (P1)-(P2), implies that if the injurer opts for a
pair (s, x∗), his payoff is u(s, x∗), regardless of the care level and activity level
chosen by the victim.

Let, u(s, x∗) = u(s)− sx∗ attains a unique maximum at (s∗p , x∗). Clearly,
s∗p > s∗. Therefore, when w∗X = 0,

[((s, x), (t , y)) is a N.E. and x = x∗]⇒ ((s∗p , x
∗), (t , y)) is a N.E.

Now, given (s∗p , x∗) opted by the injurer and w∗X = 0, the problem facing the
victim is

max
(t,y)∈T×Y

v(t)− ty − s∗p tl(x∗, y).
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Equilibrium under Standard Liability Rules IV

Therefore, the victim will choose t ∈ T and y ∈ Y that simultaneously satisfy

v ′(t) = y + s∗p l(x∗, y) (0.21)

1 + s∗p ly (x∗, y) = 0. (0.22)

Now in view of the fact that s∗p > s∗ and that l(.) is strictly convex, implies that
y > y∗.

This means that regardless of the t ∈ T opted by the victim, ((s∗p , x∗), (t , y∗))
cannot be a N.E.

When w∗X = 1, an analogous argument shows that ((s, x∗), (t , y∗)) cannot be
a N.E.
Therefore, [((s, x), (t , y)) is a N.E.⇒ (x 6= x∗ or y 6= y∗)].
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