Activity Levels

Ram Singh

September 10, 2015

Ram Singh (DSE)

Course 604

September 10, 2015 1 / 17

2

イロト イヨト イヨト イヨト

Extended Model I

- x care level as well as the cost of care for the injurer,
- y care level as well as the cost of care for the victim,
- s activity level for the injurer,
- t activity level for the victim,
- $X = \{x \mid x \text{ is some feasible level of care for the injurer }\},$
- $Y = \{y \mid y \text{ is some feasible level of care for the victim}\},$
- *S* = {*s* | *s* is some feasible level of activity for the injurer },
- $T = \{t \mid t \text{ is some feasible level of activity for the victim}\},$
- u(s, x) the benefit function for the injurer,
- v(t, y) the benefit function for the victim,
- π the probability of accident,

Extended Model II

- *D* the loss suffered by the victim in the event of an accident, $D \ge 0$.
- L the expected accident loss.
- Social benefits from the activity of a party are fully internalized by that party.

•
$$u(s,x) = u(s) - sx$$
, $v(t,y) = v(t) - ty$, and
 $L(s,x,t,y) = st\pi(x,y)D(x,y) = stl(x,y)$.

So, the social optimization problem is given by:

$$\max_{\substack{(s,x,t,y)\in S\times X\times T\times Y\\(s,x,t,y)\in S\times X\times T\times Y}} u(s,x) + v(t,y) - L(s,x,t,y), i.e.,$$

$$\max_{\substack{(s,x,t,y)\in S\times X\times T\times Y\\(s,x,t,y)\in S\times X\times T\times Y}} u(s) - sx + v(t) - ty - stl(x,y).$$
(0.1)

Let

Ram Singh (DSE)

September 10, 2015 3 / 17

< ロ > < 同 > < 回 > < 回 >

Extended Model III

•
$$((s^*, x^*), (t^*, y^*)) >> ((0, 0), (0, 0))$$

Therefore, s^* , x^* , t^* , and y^* simultaneously and respectively solve the following necessary and sufficient first order conditions:

$$u'(s) - x - tl(x, y) = 0$$
 (0.2)

$$1 + t I_x(x, y) = 0 (0.3)$$

$$v'(t) - y - sl(x, y) = 0$$
 (0.4)

$$1 + sl_y(x, y) = 0$$
 (0.5)

That is, s^* , x^* , t^* , and y^* simultaneously and respectively satisfy the following:

$$u'(s) = x^* + t^* l(x^*, y^*)$$
 (0.6)

$$0 = 1 + t^* l_x(x, y^*)$$
 (0.7)

$$v'(t) = y^* + s^* l(x^*, y^*)$$
 (0.8)

$$0 = 1 + s^* l_y(x^*, y)$$
 (0.9)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extended Model IV

- x and y are verifiable but s and t are not
- The legal due care standard (i.e., the negligence standard) for the injurer, is set at *x**. Similarly, the legal negligence standard of care for the victim, is set at *y**.

A liability rule is a function w_X :

$$w_X : X \times Y \mapsto [0, 1]$$

such that; $0 \le w_X(x, y) \le 1$, and $w_X(x, y) + w_Y(x, y) = 1$, i.e.,
 $w_Y(x, y) = 1 - w_X(x, y)$.

< ロ > < 同 > < 回 > < 回 >

Impossibility of Efficient Outcome I

For given $(t, y) \in T \times Y$ opted by the victim and the liability rule in force, the problem facing the injurer is

$$\max_{(s,x)\in S\times X} \quad u(s) - sx - w_X(x,y)stl(x,y). \tag{0.10}$$

Likewise, given $(s, x) \in S \times X$ opted by the injurer, the problem facing the victim is

$$\max_{(t,y)\in T\times Y} v(t) - ty - (1 - w_X(x,y))stl(x,y),$$
(0.11)

To see why no liability rule is efficient. Consider a liability rule. Suppose it induces an equilibrium in which the injurer opts for x^* and the victim opts for y^* - otherwise there is nothing to prove.

Now, given the equilibrium choice of x^* by the injurer and of y^* by the victim, the injurer will choose *s* to solve

$$\max_{s} \{u(s) - sx^* - w_X(x^*, y^*) stl(x^*, y^*)\},\$$

Impossibility of Efficient Outcome II

Similarly, the victim will choose t that satisfies

$$\max_{t} \{ v(t) - ty^* - (1 - w_X(x^*, y^*)) stl(x^*, y^*) \}$$

So, in equilibrium, s and t will satisfy (0.12) and (0.13), respectively.

$$u'(s) = x^* + w_X(x^*, y^*) tl(x^*, y^*)$$
 (0.12)

$$v'(t) = y^* + (1 - w_X(x^*, y^*)) sl(x^*, y^*),$$
 (0.13)

In view of (0.6) and (0.8), s^* and t^* will solve (0.12) and (0.13) only if $w_X(x^*, y^*) = 1$ and simultaneously $(1 - w_X(x^*, y^*)) = w_Y(x^*, y^*) = 1$ holds. However, under a liability rule this is impossible.

イロト 不得 トイヨト イヨト ヨー ろくの

An Efficient Mechanism I

Consider the following mechanism:

$$(\forall (x, y) \in X \times Y)[w_X(x, y) = 1 \text{ and } w_Y(x, y) = 1]$$

That is, regardless of the care choice made by the two parties, both are required to bear full accident loss. For example,

- the injurer is required to deposit a fine equal to accident loss
- at the same time, the victim is not provided any compensation Under such a mechanism, the injurer will solve

$$\max_{s,x}\{u(s)-sx-w_X(x,y)stl(x,y)\},\$$

Similarly, the victim will choose t that satisfies

$$\max_{t} \{v(t) - ty - w_Y(x, y) stl(x, y)\}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So, the equilibrium is characterized by the following first order conditions:

$$u'(s) - x - tl(x, y) = 0$$
 (0.14)

$$1 + t I_x(x, y) = 0 (0.15)$$

$$v'(t) - y - sl(x, y) = 0$$
 (0.16)

$$1 + sl_y(x, y) = 0$$
 (0.17)

which are same as the system (0.2)- (0.5). So, s^* , x^* , t^* , and y^* will be opted simultaneously.

イロト イポト イヨト イヨト

Predicting the Outcome I

Property (P1):

$$[(x \ge x^* \& y < y^* \Rightarrow w_X = 0) \text{ and } (x < x^* \& y \ge y^* \Rightarrow w_X = 1)].$$

Lemma

Under a liability rule satisfying (P1), $(\forall ((s,x),(t,y))) [x < x^* \& y < y^* \Rightarrow ((s,x),(t,y)) \text{ cannot be a N.E. }].$

Take any ((s, x), (t, y)) such that $x < x^*$ and $y < y^*$. Suppose, the injurer opts for (s, x) and the victim for (t, y).

At at ((s, x), (t, y)), the expected payoff of the victim is

$$v(t) - ty - (1 - w_X(x, y))stl(x, y).$$

On the other hand, if the victim instead opts for (t^*, y^*) , then his payoff will be $v(t^*, y^*)$.

Predicting the Outcome II

Similarly, at ((s, x), (t, y)) the expected payoff of the injurer is $u(s) - sx - w_X(x, y)$ stl(x, y). But, if the injurer instead opt for (s^*, x^*) , his payoff will be $u(s^*, x^*)$.

At ((s, x), (t, y)) if

$$u(s^*, x^*) > u(s) - sx - w_X(x, y) stl(x, y),$$

((s, x), (t, y)) cannot be a N.E. Therefore, assume that

$$u(s) - sx - w_X(x, y) \ stl(x, y) \ge u(s^*, x^*).$$
 (0.18)

Since $((s, x), (t, y)) \neq ((s^*, x^*), (t^*, y^*))$, by assumption, we know that

 $u(s^*, x^*) + v(t^*, y^*) - L(s^*, x^*, t^*, y^*) > u(s) - sx + v(t) - ty - stl(x, y).$ (0.19)

Predicting the Outcome III

Subtracting $u(s^*, x^*)$ from the LHS and $u(s) - sx - w_X(x, y)stl(x, y)$ from the RHS of (5), in view of (4), we get

$$v(t^*, y^*) - L(s^*, x^*, t^*, y^*) > v(t) - ty - (1 - w_X(x, y))stl(x, y).$$
 (0.20)

Now, since $L(s^*, x^*, t^*, y^*) \ge 0$, from (6) we have

$$v(t^*, y^*) > v(t) - ty - (1 - w_X(x, y))stl(x, y).$$

Again, ((s, x), (t, y)) cannot be a N.E.

Lemma

Under a liability rule satisfying (P1), $(\forall ((s,x),(t,y))) [x > x^* \& y < y^* \Rightarrow ((s,x),(t,y))$ cannot be a N.E.].

Predicting the Outcome IV

Lemma

Under a liability rule satisfying (P1), $(\forall ((s,x),(t,y))) [x < x^* \& y > y^* \Rightarrow ((s,x),(t,y)) \text{ cannot be a N.E. }].$

Remark

The above results hold for any general u(s, x), v(t, y) and L(s, x, t, y) functions, subject to usual assumptions.

Theorem

Suppose L(s, x, t, y) = stl(x, y). Under a liability that satisfies Property (P1), $(\forall ((s, x), (t, y))) [((s, x), (t, y)) \text{ is a N.E.} \Rightarrow (x \ge x^* \& y \ge y^*)].$

Property (P2):

$$(\forall x \in X)(\forall y \in Y)[x \ge x^* \& y \ge y^* \Rightarrow w_X(x,y) = w_X(x^*,y^*) = w_X^*].$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equilibrium under Standard Liability Rules I

Miceli (1997 p. 29), Cooter and Ulen (2004, pp. 332-33), Dari Mattiacci (2002), Parisi and Fon (2004), among others, assume L(s, x, t, y) = stl(x, y).

These studies argue that: the injurer and the victim opt for x^* and y^* , respectively

- under the rule of negligence
- under the rule of negligence with the defense of contributory negligence
- under the rule of strict liability with the defense of contributory negligence

Equilibrium under Standard Liability Rules II

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with $w_X^* \in \{0, 1\}$: Under the rule: ((s, x), (t, y)) is a N.E. $\Rightarrow (x \neq x^* \text{ or } y \neq y^*)$

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with $w_X^* \in \{0, 1\}$, Under the rule: when $w_X^* = 0$, for some $y > y^* \& t < t^*$, $((s_p^*, x^*), (t, y))$ is a N.E. $(s_p^* > s^*)$

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with $w_X^* \in \{0, 1\}$, Under the rule: when $w_X^* = 1$, for some $s < s^* \& x > x^*$, $((s, x), (t_p^*, y^*))$ is a N.E. $(t_p^* > t^*)$

3

イロト 不得 トイヨト イヨト

Equilibrium under Standard Liability Rules III

Suppose, ((s, x), (t, y)) is a N.E. under the rule.

- if $x \neq x^*$, there is nothing to prove.
- so, let $x = x^*$.

 $w_X^* = 0$, in view of Properties (P1)-(P2), implies that if the injurer opts for a pair (s, x^*) , his payoff is $u(s, x^*)$, regardless of the care level and activity level chosen by the victim.

Let, $u(s, x^*) = u(s) - sx^*$ attains a unique maximum at (s_p^*, x^*) . Clearly, $s_p^* > s^*$. Therefore, when $w_{\chi}^* = 0$,

 $[((s,x),(t,y)) \text{ is a N.E. and } x = x^*] \Rightarrow ((s_p^*,x^*),(t,y)) \text{ is a N.E.}$

Now, given (s_{ρ}^*, x^*) opted by the injurer and $w_X^* = 0$, the problem facing the victim is

$$\max_{t,y)\in T\times Y} \quad v(t)-ty-s_p^*tl(x^*,y).$$

Equilibrium under Standard Liability Rules IV

Therefore, the victim will choose $t \in T$ and $y \in Y$ that simultaneously satisfy

$$v'(t) = y + s_p^* l(x^*, y)$$
 (0.21)

$$1 + s_{\rho}^* l_{\gamma}(x^*, y) = 0. \tag{0.22}$$

Now in view of the fact that $s_p^* > s^*$ and that I(.) is strictly convex, implies that $y > y^*$.

This means that regardless of the $t \in T$ opted by the victim, $((s_p^*, x^*), (t, y^*))$ cannot be a N.E.

When $w_X^* = 1$, an analogous argument shows that $((s, x^*), (t, y^*))$ cannot be a N.E. Therefore, [((s, x), (t, y)) is a N.E. $\Rightarrow (x \neq x^* \text{ or } y \neq y^*)]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで