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Equilibrium under Standard Liability Rules I

Miceli ( 1997 p. 29), Cooter and Ulen (2004, pp. 332-33), Dari Mattiacci
(2002), Parisi and Fon (2004), among others, assume L(s, x , t , y) = stl(x , y).

These studies argue that:
the injurer and the victim opt for x∗ and y∗, respectively

under the rule of negligence

under the rule of negligence with the defense of contributory negligence

under the rule of strict liability with the defense of contributory negligence
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Equilibrium under Standard Liability Rules II

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with w∗X ∈ {0,1}:
Under the rule:
((s, x), (t , y)) is a N.E.⇒ (x 6= x∗ or y 6= y∗)

Proposition

Suppose a liability rule satisfies Properties (P1) and (P2). If w∗X = 0, then for
some y > y∗ & t < t∗, ((s∗p , x∗), (t , y)) is a N.E. (s∗p > s∗).

Let the equilibrium be denoted by ((ŝ, x̂), (̂t , ŷ)). We know that x̂ ≥ x∗ and
ŷ ≥ y∗ holds.

When w∗X = 0, x̂ ≥ x∗ and ŷ ≥ y∗

u(s)− sx∗ attains a unique maximum at (s∗p , x∗), where s∗p solves

u′(s) = x∗, i .e.,
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Equilibrium under Standard Liability Rules III

s∗p > s∗. Therefore, when w∗X = 0, the injurer will choose the pair (s∗p , x∗).
That is, (ŝ, x̂) = (s∗p , x∗)

Now, given (s∗p , x∗) opted by the injurer, the problem facing the victim is

max
(t,y)∈T×Y

v(t)− ty − s∗p tl(x∗, y).

Therefore, the victim will choose t̂ ∈ T and ŷ ∈ Y that simultaneously satisfy

v ′(t) = y + s∗p l(x∗, y) (0.1)

1 + s∗p ly (x∗, y) = 0. (0.2)

Now in view of the fact that s∗p > s∗ and that lyy (.) > 0, implies that ŷ > y∗.
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Equilibrium under Standard Liability Rules IV
Note (t∗, y∗) uniquely solves

max
(t,y)∈T×Y

{v(t) + u(s∗)− ty − s∗x∗ − s∗tl(x∗, y)}, i .e.,

max
(t,y)∈T×Y

{v(t)− ty − s∗tl(x∗, y)}, i .e.,

y∗ uniquely solves

max
y
{v(t∗)− t∗y − s∗t∗l(x∗, y)}, i .e.,

y∗ uniquely solves

min
y
{t∗[y + s∗l(x∗, y)]}, i .e.,

y∗ uniquely solves

min
y
{y + s∗l(x∗, y)}.
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Equilibrium under Standard Liability Rules V

Therefore
(∀y ∈ Y )[y + s∗l(x∗, y) ≥ y∗ + s∗l(x∗, y∗)] (0.3)

Moreover,
(∀y ∈ Y )[y + s∗p l(x∗, y) > y + s∗l(x∗, y)]

Therefore,
(∀y ∈ Y )[y + s∗p l(x∗, y) > y∗ + s∗l(x∗, y∗)] (0.4)

Recall, t∗ solves
v ′(t) = y∗ + s∗l(x∗, y∗)

but, equilibrium choice t̂ will solve

v ′(t) = y + s∗p l(x∗, y)

Which gives us t̂ < t∗.
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Equilibrium under Standard Liability Rules VI

Remark

When For (s∗p , x∗, t̂ , ŷ) to be a N.E., the following must hold: for all (s, x)
such that x < x∗,

u(s)− sx − st̂ l(x , ŷ) < u(s∗p)− s∗px∗

Proposition

Suppose a liability rule satisfies Properties (P1) and (P2). If w∗X = 1, then for
some x > x∗ & s < s∗, ((s, t), (t∗p , y∗)) is a N.E.
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The Second Best Liability Rules I

Suppose the Social Planner can

fix legal standards at x∗ and y∗ and can implement them with sufficient
penalty for deviations

choose w∗X = wX (x∗, y∗) and allows parties to choose ONLY their
activity levels

Question

Is it possible to induce an equilibrium in which injurer chooses (s∗, x∗),
and the victim opts for y∗ along with some t?

Is it possible to induce an equilibrium in which injurer chooses x∗ along
with some s, and the victim opts for (t∗, y∗) ?
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The Second Best Liability Rules II

By assumption the Social Planner can induce x∗ and y∗.

Let w∗Y = 1− w∗X . Now, given the choice of x∗ by the injurer and of y∗ by the
victim, the injurer will choose s to solve

max
s
{u(s)− sx∗ − w∗X stl(x∗, y∗)},

Similarly, the victim will choose t that satisfies

max
t
{v(t)− ty∗ − (1− w∗X )stl(x∗, y∗).}

So, in equilibrium, ŝ and t̂ will satisfy (0.5) and (0.6), respectively.

u′(s) = x∗ + w∗X tl(x∗, y∗) (0.5)
v ′(t) = y∗ + (1− w∗X )sl(x∗, y∗), (0.6)
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The Mis-specified Optimization Problem I

It turns out that the social benefit function considered above, leads to a
mis-specified optimization problem. To show this let us use the following
example.

u(s)− sx =
√

s − sx

v(t)− ty =
√

t − ty

l(x , y) = πD = D
1+x+y , where D is constant

so the SOP is
√

s +
√

t − sx − ty − stD
1 + x + y

Assuming D = 576, we get

(s∗, x∗, t∗, y∗) = (
1

64
,1,

1
64
,1)

Moreover, the TSB at (s∗, x∗, t∗, y∗)
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The Mis-specified Optimization Problem II

is
0.172

Suppose the Social Planner

sets the legal standards at x∗ = 1 and y∗ = 1 and implements them

choose w∗X = 0 and allows parties to choose there care levels

Now, ŝ will maximize √
s − sx∗

1
2

s
−1
2 = 1, i .e., (0.7)

ŝ = 1
4 .

But t̂ ∈ T will be such that

1
2

t
−1
2 = 1 + 1

sD
3

(0.8)
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The Mis-specified Optimization Problem III

t̂ = 1
(98)2

Moreover, the TSB at (ŝ, x∗, t̂ , y∗) = ( 1
4 ,1,

1
(98)2 ,1) is

0.255

Reason???
Let x = y = t = 0, now the TSB is given by

√
s

which is unbounded!

The standard SOP is

u(s) + v(t)− sx − ty − stl(x , y)

has the same problem as long as u(s) or v(t) is monotonic.
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