Efficiency of Liability Rules: Re-Examination

Ram Singh

Lecture 17

September 14, 2015

Ram Singh (DSE)

Course 604

September 14, 2015 1 / 12

Equilibrium under Standard Liability Rules I

Miceli (1997 p. 29), Cooter and Ulen (2004, pp. 332-33), Dari Mattiacci (2002), Parisi and Fon (2004), among others, assume L(s, x, t, y) = stl(x, y).

These studies argue that: the injurer and the victim opt for x^* and y^* , respectively

- under the rule of negligence
- under the rule of negligence with the defense of contributory negligence
- under the rule of strict liability with the defense of contributory negligence

Equilibrium under Standard Liability Rules II

Lemma

Suppose a liability rule satisfies Properties (P1) and (P2) with $w_X^* \in \{0, 1\}$: Under the rule: ((s, x), (t, y)) is a N.E. $\Rightarrow (x \neq x^* \text{ or } y \neq y^*)$

Proposition

Suppose a liability rule satisfies Properties (P1) and (P2). If $w_X^* = 0$, then for some $y > y^* \& t < t^*$, $((s_p^*, x^*), (t, y))$ is a N.E. $(s_p^* > s^*)$.

Let the equilibrium be denoted by $((\hat{s}, \hat{x}), (\hat{t}, \hat{y}))$. We know that $\hat{x} \ge x^*$ and $\hat{y} \ge y^*$ holds.

When $w_X^* = 0$, $\hat{x} \ge x^*$ and $\hat{y} \ge y^*$ $u(s) - sx^*$ attains a unique maximum at (s_p^*, x^*) , where s_p^* solves

$$u'(s) = x^*, i.e.,$$

Equilibrium under Standard Liability Rules III

 $s_p^* > s^*$. Therefore, when $w_X^* = 0$, the injurer will choose the pair (s_p^*, x^*) . That is, $(\hat{s}, \hat{x}) = (s_p^*, x^*)$

Now, given (s_{p}^{*}, x^{*}) opted by the injurer, the problem facing the victim is

$$\max_{(t,y)\in T\times Y} \quad v(t)-ty-s_p^*tl(x^*,y).$$

Therefore, the victim will choose $\hat{t} \in T$ and $\hat{y} \in Y$ that simultaneously satisfy

$$v'(t) = y + s_{\rho}^* l(x^*, y)$$
 (0.1)

$$1 + s_{\rho}^{*} l_{\gamma}(x^{*}, y) = 0.$$
 (0.2)

Now in view of the fact that $s_p^* > s^*$ and that $l_{yy}(.) > 0$, implies that $\hat{y} > y^*$.

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < ⊙ < ⊙

Equilibrium under Standard Liability Rules IV

Note (t^*, y^*) uniquely solves

$$\max_{(t,y)\in T\times Y} \{v(t) + u(s^*) - ty - s^*x^* - s^*tl(x^*, y)\}, i.e.,$$

$$\max_{(t,y)\in T\times Y} \{v(t) - ty - s^* t l(x^*, y)\}, i.e.,$$

y* uniquely solves

$$\max_{y} \{v(t^*) - t^*y - s^*t^*l(x^*, y)\}, i.e.,$$

y* uniquely solves

$$\min_{y} \{t^*[y + s^* l(x^*, y)]\}, i.e.,$$

y* uniquely solves

$$\min_{y}\{y+s^*l(x^*,y)\}.$$

Ram Singh (DSE)

Course 604

Equilibrium under Standard Liability Rules V

Therefore

$$(\forall y \in Y)[y + s^* l(x^*, y) \ge y^* + s^* l(x^*, y^*)]$$
 (0.3)

Moreover,

$$(\forall y \in Y)[y + s_{\rho}^*l(x^*, y) > y + s^*l(x^*, y)]$$

Therefore,

$$(\forall y \in Y)[y + s_{\rho}^* l(x^*, y) > y^* + s^* l(x^*, y^*)]$$
 (0.4)

Recall, t* solves

$$v'(t) = y^* + s^* l(x^*, y^*)$$

but, equilibrium choice \hat{t} will solve

$$\mathbf{v}'(t) = \mathbf{y} + \mathbf{s}_p^* l(\mathbf{x}^*, \mathbf{y})$$

Which gives us $\hat{t} < t^*$.

EN 4 EN

Equilibrium under Standard Liability Rules VI

Remark

When For (s^{*}_p, x^{*}, t̂, ŷ) to be a N.E., the following must hold: for all (s, x) such that x < x^{*},

$$u(s) - sx - \hat{stl}(x, \hat{y}) < u(s_p^*) - s_p^* x^*$$

Proposition

Suppose a liability rule satisfies Properties (P1) and (P2). If $w_X^* = 1$, then for some $x > x^* \& s < s^*$, $((s, t), (t_p^*, y^*))$ is a N.E.

The Second Best Liability Rules I

Suppose the Social Planner can

- fix legal standards at *x*^{*} and *y*^{*} and can implement them with sufficient penalty for deviations
- choose w^{*}_X = w_X(x^{*}, y^{*}) and allows parties to choose ONLY their activity levels

Question

- Is it possible to induce an equilibrium in which injurer chooses (s*, x*), and the victim opts for y* along with some t?
- Is it possible to induce an equilibrium in which injurer chooses x* along with some s, and the victim opts for (t*, y*)?

Ram Singh	(DSE)
riani onign	

・ロト ・ 四ト ・ ヨト ・ ヨト

The Second Best Liability Rules II

By assumption the Social Planner can induce x^* and y^* .

Let $w_Y^* = 1 - w_X^*$. Now, given the choice of x^* by the injurer and of y^* by the victim, the injurer will choose *s* to solve

$$\max_{s} \{ u(s) - sx^{*} - w_{x}^{*} stl(x^{*}, y^{*}) \},\$$

Similarly, the victim will choose t that satisfies

$$\max_{t} \{ v(t) - ty^* - (1 - w_X^*) stl(x^*, y^*) \}$$

So, in equilibrium, \hat{s} and \hat{t} will satisfy (0.5) and (0.6), respectively.

$$u'(s) = x^* + w_X^* t l(x^*, y^*)$$
 (0.5)

$$v'(t) = y^* + (1 - w_X^*) sl(x^*, y^*),$$
 (0.6)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Mis-specified Optimization Problem I

It turns out that the social benefit function considered above, leads to a mis-specified optimization problem. To show this let us use the following example.

•
$$u(s) - sx = \sqrt{s} - sx$$

• $v(t) - ty = \sqrt{t} - ty$
• $l(x, y) = \pi D = \frac{D}{1+x+y}$, where *D* is constant

so the SOP is

$$\sqrt{s} + \sqrt{t} - sx - ty - \frac{stD}{1 + x + y}$$

Assuming D = 576, we get

$$(s^*, x^*, t^*, y^*) = (\frac{1}{64}, 1, \frac{1}{64}, 1)$$

Moreover, the TSB at (s^*, x^*, t^*, y^*)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Mis-specified Optimization Problem II

is

Suppose the Social Planner

- sets the legal standards at $x^* = 1$ and $y^* = 1$ and implements them
- choose $w_X^* = 0$ and allows parties to choose there care levels

Now, ŝ will maximize

$$\sqrt{s} - sx^*$$

$$\frac{1}{2}s^{\frac{-1}{2}} = 1, i.e., \tag{0.7}$$

 $\hat{s} = \frac{1}{4}$. But $\hat{t} \in T$ will be such that

$$\frac{1}{2}t^{\frac{-1}{2}} = 1 + 1\frac{sD}{3} \tag{0.8}$$

September 14, 2015

11/12

The Mis-specified Optimization Problem III

 $\hat{t} = \frac{1}{(98)^2}$ Moreover, the TSB at $(\hat{s}, x^*, \hat{t}, y^*) = (\frac{1}{4}, 1, \frac{1}{(98)^2}, 1)$ is

0.255

Reason??? Let x = y = t = 0, now the TSB is given by

 \sqrt{s}

which is unbounded!

The standard SOP is

$$u(s) + v(t) - sx - ty - stl(x, y)$$

has the same problem as long as u(s) or v(t) is monotonic.