Product Liability

Ram Singh
Lecture 18
September 16, 2015

Basics I

- x the cost of care taken by the firm, $x \geq 0, x \in X$,
- y the cost of care taken by the consumer, $y \geq 0, y \in Y$,
- π the probability of occurrence of an accident,
- D the loss in case an accident actually materializes, $D \geq 0$,
- L the expected loss due to the accident. $L=\pi D$,
- L_{c} the expected accident loss as perceived by the consumer,
- n number of firms in the industry,
- q number of units of the product produced by a firm,

Basics II

DAC the direct accident costs - the sum of costs of care and the expected accident loss, i.e., $D A C=x+y+L(x, y)$.
Function $x+y+L(x, y)$ is uniquely minimized at $\left(x^{*}, y^{*}\right) \gg(0,0)$. As a result, for all $(x, y) \neq\left(x^{*}, y^{*}\right)$, we have

$$
x+y+L(x, y)>x^{*}+y^{*}+L\left(x^{*}, y^{*}\right)
$$

- Neither party observes the care taken by the other party.
- Firms are completely informed about the expected loss function $L(x, y)$.
- Consumers, on the other hand, are not completely informed about the expected loss;
- when the expected loss is $L(x, y)$, a consumer perceives it to be $L_{c}(x, y)$, where $L_{c}($.$) may not be equal to L($.$) . However, L_{c}(x, y) \geq 0$

Basics III

Remark

x, y, π, D, and L are defined per unit of the product.
DAC $=x+y+L(x, y)$. Therefore, the direct accident costs per firm are

$$
q[x+y+L(x, y)]
$$

and the direct accident costs for the entire industry are

$$
n q[x+y+L(x, y)] .
$$

Social Objective I

- $u_{i}($.$) marginal consumption benefit to the i^{\prime}$ th consumer from the product; $u_{i}^{\prime}()<$.
- p the market price of one unit of the product,
- $C($.) the cost of production function for a firm. $C(q)$, is such that $C(q) / q$ has a unique minima.
- $P($.$) the inverse demand function for the industry,$

Social Objective II

The social objective is to choose x, y, q and n so as to maximize the social surplus

$$
\begin{equation*}
\int_{0}^{n q} P(z) d z-n C(q)-n q[x+y+L(x, y)] \tag{0.1}
\end{equation*}
$$

The focs for q and n are given by (2) and (3), respectively.

$$
\begin{align*}
& P(n q)=C^{\prime}(q)+x+y+L(x, y) \tag{0.2}\\
& P(n q)=\frac{C(q)}{q}+x+y+L(x, y) \tag{0.3}
\end{align*}
$$

Let

- $\bar{q}(x, y)$ and $\bar{n}(x, y)$ uniquely solve (0.2) and (0.3) simultaneously.
- $\bar{q}\left(x^{*}, y^{*}\right)=q^{*}$ and $\bar{n}\left(x^{*}, y^{*}\right)=n^{*}$.

Product Liability Rules I

A PLR can be defined as a function

$$
w_{X}: X \times Y \mapsto[0,1], \text { such that: } w_{X} \in[0,1]
$$

where $w_{X} \geq 0$ [$w_{Y} \geq 0$] is the proportion of loss that the firm [the consumer] is required to bear. Clearly, $w_{X}+w_{Y}=1$.

The firm's expected accident costs are:

$$
x+w_{X}(x, y) \pi(x, y) D(x, y)=x+w_{X}(x, y) L(x, y)
$$

As far as the consumer is concerned, his his expected accident costs are:

$$
y+L_{c}(x, y)-w_{x}(x, y) L_{c}(x, y)=y+w_{Y}(x, y) L_{c}(x, y)
$$

Competitive Equilibrium I

The 'perceived' full price per unit of product is

$$
p+y+w_{Y}(x, y) L_{c}(x, y)
$$

Therefore, a consumer i's problem is to choose the quantity q_{i} and the level of care y to maximize his utility

$$
\begin{equation*}
\int_{0}^{q_{i}} u_{i}(z) d z-p q_{i}-q_{i}\left[y+w_{Y}(x, y) L_{c}(x, y)\right] \tag{0.4}
\end{equation*}
$$

the foc is

$$
u_{i}\left(q_{i}\right)=p+y+w_{Y}(x, y) L_{c}(x, y) .
$$

Competitive Equilibrium II

Alternatively, consumers' problem is equivalent to that of choosing the quantity Q and the care y to maximize

$$
\begin{equation*}
\int_{0}^{Q} P(z) d z-p Q-Q\left[y+w_{Y}(x, y) L_{c}(x, y)\right] \tag{0.5}
\end{equation*}
$$

The foc for Q is

$$
\begin{equation*}
P(Q)=p+y+w_{Y}(x, y) L_{c}(x, y) . \tag{0.6}
\end{equation*}
$$

Similarly, given the PLR a firm's problem is to choose the quantity q and the level of care x so as to maximize

$$
\begin{equation*}
p q-C(q)-q\left[x+w_{x}(x, y) L(x, y)\right] \tag{0.7}
\end{equation*}
$$

The foc for q is

$$
\begin{equation*}
p=C^{\prime}(q)+x+w_{x}(x, y) L(x, y) \tag{0.8}
\end{equation*}
$$

Competitive Equilibrium III

Free entry assumption implies that

$$
\begin{align*}
p q & =C(q)+q\left[x+w_{x}(x, y) L(x, y)\right], i . e . \\
p & =\frac{C(q)}{q}+x+w_{x}(x, y) L(x, y) \tag{0.9}
\end{align*}
$$

Remark

A consumer chooses y to minimizes $y+w_{Y}(x, y) L_{c}(x, y)$, regardless of his level of consumption. Analogously, the firm chooses x to minimizes $x+w_{X}(x, y) L(x, y)$.

Competitive Equilibrium IV

An equilibrium is defined as a tuple $<\hat{Q}, \hat{p}, \hat{q}, \hat{n}, \hat{x}, \hat{y}>$ such that:

$$
\hat{Q}=\hat{n} \hat{q} ;
$$

and \hat{Q}, \hat{p}, and \hat{q} satisfy (6), (8) and (9), respectively;

$$
\hat{x}=\arg \min _{x \in X}\left\{x+w_{X}(x, y) L(x, y)\right\}
$$

and

$$
\hat{y}=\arg \min _{y \in Y}\left\{y+w_{Y}(x, y) L_{c}(x, y)\right\} .
$$

Competitive Equilibrium V

Now, from (0.6)\&(0.8) in equilibrium we have

$$
\begin{align*}
P(Q) & =P(n q) \\
& =C^{\prime}(q)+y+x+w_{Y}(x, y) L_{c}(x, y)+w_{X}(x, y) L(x, y) \tag{0.10}
\end{align*}
$$

and from (0.6) and (0.9) we get

$$
\begin{align*}
P(Q) & =P(n q) \\
& =\frac{C(q)}{q}+y+x+w_{y}(x, y) L_{c}(x, y)+w_{X}(x, y) L(x, y) \tag{0.11}
\end{align*}
$$

Remark

Generally the solution to $(0.10) \&(0.11)$ will be different from that of $(0.2) \&(0.3) .(0.10) \&(0.11)$, however, imply that $C^{\prime}(q)=C(q) / q$, i.e., in equilibrium output per firm is efficient.

Efficient PLRs: Unilateral Care I

- Only the firm can take care
- Formally, $y>0$ is not possible; you can also assume $y^{*}=0$.
- So, x^{*} solves

$$
\min _{x}\{x+L(x)\}
$$

So, (0.10) and (0.11) become

$$
\begin{align*}
& =C^{\prime}(q)+x+w_{y}(x, y) L_{c}(x, y)+w_{X}(x, y) L(x, y) \\
& =\frac{C(q)}{q}+x+w_{Y}(x, y) L_{c}(x, y)+w_{X}(x, y) L(x, y) \tag{0.12}
\end{align*}
$$

Also, a firm will choose x to minimizes

$$
x+w_{x}(x) L(x)
$$

Efficient PLRs: Unilateral Care II

Exercise

Find out the equilibrium outcome under the Rule of Strict Liability, Rule of Negligence, and the Rule of No-liability. Assuming that
(1) consumers know $L(x)$ function and can observe x.
(2) consumers know $L(x)$ function but cannot observe x.
(3) consumers do NOT know $L(x)$ function correctly, moreover they cannot observe x.

Efficient PLRs: Bilateral Care I

Definition

A PLR is efficient if for every given $Y, X, L,\left(x^{*}, y^{*}\right)$, and $C(q)$, iff: $\left(x^{*}, y^{*}\right)$ is a unique Nash equilibrium (N.E.); and in equilibrium q^{*} and n^{*} solve (0.10) and (0.11), simultaneously.

Lemma

A PLR is efficient for every possible choice of $Y, X, L,\left(x^{*}, y^{*}\right), L_{c}$, and $C(q)$ only if

$$
y \geq y^{*} \Rightarrow w_{X}=1
$$

Efficient PLRs: Bilateral Care II

Definition

Condition of Negligent Consumer's Liability (NCL): A PLR satisfies condition NCL if:

$$
\begin{aligned}
y \geq y^{*} & \Rightarrow w_{X}=1 \\
x \geq x^{*} \& y<y^{*} & \Rightarrow w_{X}=0
\end{aligned}
$$

Rule of Strict Liability with Defense:

$$
\begin{aligned}
& y \geq y^{*} \Rightarrow w_{X}=1 \\
& y<y^{*} \Rightarrow w_{X}=0
\end{aligned}
$$

Efficient PLRs: Bilateral Care III

Another Strict Liability based rule:

$$
\begin{aligned}
y \geq y^{*} & \Rightarrow \quad w_{X}=1 \\
x \geq x^{*} \& y<y^{*} & \Rightarrow \quad w_{X}=0 \\
x<x^{*} \& y<y^{*} & \Rightarrow w_{X}=1
\end{aligned}
$$

Property P1: If a PLR specifies the due care standards for both the parties, L_{c} is such that: $(\forall(x, y) \in X \times Y)$

$$
\begin{aligned}
x^{*}+y^{*}+L_{c}\left(x^{*}, y^{*}\right) & \leq x+y+L_{c}(x, y), \\
(x, y) \neq\left(x^{*}, y^{*}\right) & \Rightarrow\left[x^{*}+y^{*}+L_{c}\left(x^{*}, y^{*}\right)<x+y+L_{c}(x, y)\right]
\end{aligned}
$$

Lemma

If a PLR satisfies the condition NCL then for every possible choice of X, Y, L, $\left(x^{*}, y^{*}\right)$, and L_{c} satisfying (P1), $\left(x^{*}, y^{*}\right)$ is a N.E.

Efficient PLRs: Bilateral Care IV

Lemma

If a PLR satisfies condition NCL then for every possible choice of X, Y, L, $\left(x^{*}, y^{*}\right)$, and L_{c} satisfying ($P 1$),

$$
(\forall(\bar{x}, \bar{y}) \in X \times Y)\left[(\bar{x}, \bar{y}) \text { is a N.E. } \rightarrow(\bar{x}, \bar{y})=\left(x^{*}, y^{*}\right)\right] .
$$

