Delhi School of Economics

Course 001: Microeconomic Theory
Solutions to Midterm exam, 2014.

1. (a) For interior solution

$$
M R S=\frac{1}{2}\left(\frac{x_{2}+1}{x_{1}-1}\right)=\frac{p_{1}}{p_{2}}
$$

Using this in the budget constraint, we get

$$
\begin{aligned}
& x_{1}=\frac{y+2 p_{1}+p_{2}}{3 p_{1}} \\
& x_{2}=\frac{2 y-2 p_{1}-p_{2}}{3 p_{2}}
\end{aligned}
$$

For a corner solution at $x_{2}=0$, we need $|M R S|>\frac{p_{1}}{p_{2}}$ at that point. This is also equivalent to the expression for x_{2} derived above being positive, i.e.,

$$
y \geq \frac{2 p_{1}+p_{2}}{2}
$$

The condition for interior solution is the opposite inequality. There will never be a corner solution at $x_{1}=0$, since choices that generate positive utility are within the budget set (given $y>p_{1}$).
(b) The parametric condition required for $x_{2}=0$ is captured in the last equation.
2. (a) The firm's supply curve is obtained by applying, first, the $P=M C$ rule, which gives

$$
4 y=p \Rightarrow y=\frac{p}{4}
$$

The firm's average cost curve is given by

$$
A C(y)=\frac{8}{y}+2 y
$$

Setting $A C^{\prime}(y)=0$ and solving, we find that the minimum average cost is attained at $y=2$ and this minimum value is $A C_{\min }=8$. Therefore, the supply is positive iff $p \geq 8$. Now for this range of prices and for 20 firms, the aggregate supply is

$$
Y=\frac{p}{4} \cdot 20=5 p
$$

Using the demand function, we have market clearance when

$$
60-p=5 p \Rightarrow p=10
$$

Since this price is above $A C_{\text {min }}$, firms will be willing to supply the required quantity. Equilibrium $q=50$.
(b) In the long run equilibrium, price $p^{*}=A C_{\min }=8$. Hence equilibrium quantity $q^{*}=60-8=52$. Each firm supplies $y^{*}=2$. Total number of firms $n^{*}=\frac{q^{*}}{y^{*}}=26$.
(c) Let the tax be t per unit. Now we have $A C_{\min }=8+t$. In a long run equilibrium, since firms make zero profits, we must have $p=8+t$. However, since the target quantity is 20 , from the demand function, we also have $20=60-p$, or, $p=40$. Equating the two, we get $t=32$.
(d) For any tax t, the long run equilibrium price will be $p=8+t$. From the demand function, total sales is $q=60-8-t$. Then the revenue maximizing government sets

$$
t^{*}=\arg \max _{t} t(52-t)=26
$$

The revenue maximizing tax rate is lower.

