Injurer of Victim?

Ram Singh

Lecture 19

September 21, 2015

Injurer of Victim?

Changed Notations:

$$
D=L \& \pi(x, y)=p(x, y)
$$

Assume:

- There are two parties; X and Y
- L is constant (for simplicity)
- $p_{x}(x, y)<0, p_{x x}(x, y)>0, p_{y}(x, y)<0, p_{y y}(x, y)>0$, and so on
- In an accident, there is only one victim. However,
- X can be either the Victim or the Injurer. Similarly, Y can be either the Victim or the Injurer.

Injurer of Victim? II

$\left(x^{*}, y^{*}\right)$ uniquely solves the SOP

$$
\min _{x, y}\{x+y+p(x, y) L\}
$$

Let

- α be the subjective probability that X will be the victim; $0 \leq \alpha \leq 1$
- β be the subjective probability that Y will be the victim; $0 \leq \beta \leq 1$
- If the beliefs are coordinated or consistent, then $\alpha+\beta=1$
- If the beliefs are NOT coordinated or are inconsistent, then in general $\alpha+\beta \neq 1$

Standard Liability Rules I

The standard negligence liability rules are such that

$$
\begin{aligned}
& x \geq x^{*} \& y \geq y^{*} \quad \Rightarrow \quad \text { victim pays/not compensated } \\
& x<x^{*} \& y \geq y^{*} \quad \Rightarrow \quad X \text { pays/not compensated } \\
& x \geq x^{*} \& y<y^{*} \quad \Rightarrow \quad Y \text { pays/not compensated }
\end{aligned}
$$

Let
C_{X} denote the total accident costs for X C_{Y} denote the total accident costs for Y

Standard Liability Rules II

So, under any of the standard negligence liability rules, the following holds:

$$
\begin{align*}
& x \geq x^{*} \& y \geq y^{*} \quad \Rightarrow \quad C_{X}=x+\alpha p(x, y) L \tag{0.1}\\
& x<x^{*} \& y \geq y^{*} \quad \Rightarrow \quad C_{X}=x+p(x, y) L \tag{0.2}\\
& x \geq x^{*} \& y<y^{*} \quad \Rightarrow \quad C_{X}=x \tag{0.3}
\end{align*}
$$

Under any of standard liability rules the following will hold:
Proposition
$\left(x^{*}, y^{*}\right)$ is a N.E.
Moreover,
Proposition
If (\tilde{x}, \tilde{y}) is a N.E., then: $\tilde{x} \leq x^{*}$, and $\tilde{y} \leq y^{*}$.

Rule of Negligence I

Under the Rule of (simple) Negligence:

$$
\begin{aligned}
& x<x^{*} \& y<y^{*} \Rightarrow C_{X}=x+(1-\alpha) p(x, y) L \\
& x<x^{*} \& y<y^{*} \Rightarrow C_{Y}=y+(1-\beta) p(x, y) L
\end{aligned}
$$

Question
Consider (\tilde{x}, \tilde{y}) such that $\tilde{x}<x^{*} \& \tilde{y}<y^{*}$. Can ($\left.\tilde{x}, \tilde{y}\right)$ be a N.E.
For (\tilde{x}, \tilde{y}) to be a N.E., the following must hold:

$$
\begin{aligned}
\tilde{x}+(1-\alpha) p(\tilde{x}, \tilde{y}) L & \leq x^{*} \\
\tilde{y}+(1-\beta) p(\tilde{x}, \tilde{y}) L & \leq y^{*}
\end{aligned}
$$

Rule of Negligence II

that is,

$$
\begin{aligned}
\tilde{x}+\tilde{y}+(1-\alpha) p(\tilde{x}, \tilde{y}) L+(1-\beta) p(\tilde{x}, \tilde{y}) L & \leq x^{*}+y^{*} \\
& <\tilde{x}+\tilde{y}+p(\tilde{x}, \tilde{y}) L, i . e .
\end{aligned}
$$

$$
1<\alpha+\beta
$$

Proposition

Under the Rule of Negligence, (\tilde{x}, \tilde{y}) such that $\tilde{x}<x^{*} \& \tilde{y}<y^{*}$ can be a N.E. only if $\alpha+\beta>1$.

Rule of Contributory Negligence I

Under the Rule of Negligence with Defense of Contributory Negligence:

$$
x<x^{*} \& y<y^{*} \quad \Rightarrow \quad C_{X}=x+\alpha p(x, y) L
$$

Proposition
Under the Rule of Contributory Negligence, ($\tilde{x}, \tilde{y})$ such that $\tilde{x}<x^{*} \& \tilde{y}<y^{*}$ can be a N.E. only if $1>\alpha+\beta$.

Rule of Comparative Negligence I

Under the Rule of Comparative Negligence:

$$
x<x^{*} \& y<y^{*} \Rightarrow C_{X}=x+\frac{x^{*}-x}{\left(x^{*}-x\right)+\left(y^{*}-y\right)} p(x, y) L
$$

Proposition

Under the Rule of Comparative Negligence, for any given $0 \leq \alpha, \beta \leq 1$, ($\tilde{x}, \tilde{y})$ such that $\tilde{x}<x^{*} \& \tilde{y}<y^{*}$ CANNOT be a N.E.

Small Car or SUV? I

Let

- s denote the 'size' of vehicle owned by $X ; s \in[0, \infty)$
- t denote the 'size' of vehicle owned by $Y ; t \in[0, \infty)$
- r be the price-rate (per-unit of size) of vehicles

Let,

- $\bar{\alpha}(s, t)$ be the (objective) probability that X will be the victim; $\bar{\alpha}=\frac{t}{s+t}$
- $\bar{\beta}(s, t)$ be the (objective) probability that X will be the victim; $\bar{\beta}=\frac{s}{s+t}$

Small Car or SUV? II

Assume $\bar{\alpha}(0,0)=\frac{1}{2}=\bar{\beta}(0,0)$.
Now, for any given t and y, total costs of X are
$x+$ expected accident (liability) costs + costs of vehicle size
$x+$ expected accident (liability) costs $+s r$
Under any of standard liability rules the following will hold:
Proposition
In equilibrium, X and Y will choose x^{*} and y^{*}, respectively.
As to the choice of vehicle size, in equilibrium:
X solves

$$
\min _{s}\left\{C_{X}+r s=x^{*}+\frac{t}{s+t} p\left(x^{*}, y^{*}\right) L+r s\right\}
$$

So, we get

Small Car or SUV? III

$$
s=\left(\frac{t}{r} p\left(x^{*}, y^{*}\right) L\right)^{\frac{1}{2}}-t
$$

Similarly, Y solves

$$
\min _{t}\left\{C_{Y}+r t=y^{*}+\frac{s}{s+t} p\left(x^{*}, y^{*}\right) L+r t\right\}
$$

In equilibrium, we get we get

$$
\bar{s}=\bar{t}=\frac{1}{4} p\left(x^{*}, y^{*}\right) L
$$

Total Vehicle Size Waste is

$$
\bar{s} r+\bar{t} r=\frac{1}{2} p\left(x^{*}, y^{*}\right) L
$$

Tax on SUV?

Let,
τ be the Ad Valorem tax on vehicle size
Now, in equilibrium: X solves

$$
\min _{s}\left\{C_{X}+r s=x^{*}+\frac{t}{s+t} p\left(x^{*}, y^{*}\right) L+(1+\tau) r s\right\}
$$

Similarly, Y solves

$$
\min _{t}\left\{C_{Y}+r t=y^{*}+\frac{s}{s+t} p\left(x^{*}, y^{*}\right) L+(1+\tau) r t\right\}
$$

In equilibrium, we get we get

$$
\bar{s}=\bar{t}=\frac{1}{4(1+\tau) r} p\left(x^{*}, y^{*}\right) L
$$

Total Vehicle Size Waste is

$$
\bar{s} r+\bar{t} r=\frac{1}{2(1+\tau)} p\left(x^{*}, y^{*}\right) L
$$

Rule of Strict Liability with Defense

Proposition

Under the rule of strict liability with defense of contributory negligence, in equilibrium X and Y will choose x^{*} and y^{*}, respectively.

However, under the Rule of Strict Liability with Defense, at (x^{*}, y^{*})

$$
\begin{aligned}
& C_{X}=x^{*}+(1-\alpha) p\left(x^{*}, y^{*}\right) L=x^{*}+\frac{s}{s+t} p\left(x^{*}, y^{*}\right) L \\
& C_{Y}=y^{*}+(1-\beta) p\left(x^{*}, y^{*}\right) L=y^{*}+\frac{t}{s+t} p\left(x^{*}, y^{*}\right) L
\end{aligned}
$$

So, in equilibrium X and Y will choose $s^{*}=0$ and $t^{*}=0$, respectively.

