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1 Introduction

Recent studies have uncovered a systematic negative correlation between high tempera-
tures and national economic output, especially in developing countries. Dell, Jones, and
Olken (2012) use a global country panel and find reductions in both agricultural and non-
agricultural output for poor countries in years with higher than average temperatures. Hsiang
(2010) finds that temperature is correlated with lower output in the services sector in Cen-
tral America and the Caribbean. This intriguing relationship, suggestive of a direct link
between temperature and growth, may be of significant importance. New scientific evidence
shows that anthropogenic climate change has already led to a five fold increase in the prob-
ability of extreme temperature days over pre-industrial periods (Fischer and Knutti, 2015).
Furthermore, warming due to urban heat islands has significantly enhanced contemporary

temperatures in cities well above regional averages (Mohan et al., 2012; Zhao et al., 2014).

Isolating the specific mechanisms that underlie these correlations remains a challenge. The
impact of temperature change has been most extensively studied in the agricultural sec-
tor where high temperatures are associated with lower yields of specific crops (Lobell,
Schlenker, and Costa-Roberts, 2011; Schlenker and Roberts, 2009; Mendelsohn and Dinar,
1999; Auffhammer, Ramanathan, and Vincent, 2006). Yet agriculture alone cannot account
for these output declines, which are observed in countries with both large and small agricul-
tural sectors. Other mechanisms that have been proposed include heat effects on mortality,

political conflict and thermal stress on workers (Dell, Jones, and Olken, 2014).

We collect primary data on daily worker productivity and attendance from manufacturing
plants in several locations in India to investigate whether high ambient temperatures reduce
the quality of labor via heat stress and hence reduce economic output. We put together
evidence from plants in cloth weaving, garment manufacture, steel rolling and diamond

cutting industries. These together reflect wide variation in automation, climate control
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and labor intensity. We also compare similar plants with and without climate control by

exploiting the gradual rollout of this technology in one of the firms in our sample.

We identify two channels through which temperature affects labor. First, worker productivity
declines on hot days. Second, sustained high temperatures are associated with increased
absenteeism. We estimate output reductions of between 4 and 9 percent per degree on
days when wet bulb globe temperatures are above 27 degrees Celsius. The largest estimates
come from manual processes in the hottest parts of the country. For absenteeism, we find
that an additional day of elevated temperatures is associated with a 1 to 2 percent increase
in absenteeism in jobs where occasional absences are not penalized by the wage contract.
Interestingly, this estimate is similar to changes in time allocation observed on hot days in
the United States (Zivin and Neidell, 2014). In contrast, for daily wage workers, where the

cost of every absence is high, we find little correlation between temperature and absenteeism.

We augment this evidence from high-frequency worker output with independent estimates
based on a nationally representative panel of manufacturing plants in India over the years
1998-2008. A non-linear temperature-output relationship, similar to that observed for daily
worker productivity, can also be detected over longer term annual economic output from
individual manufacturing plants. We find that the value of annual factory output declines
during years with a greater number of high temperature days at the rate of about three

percent per degree day.

We also show that the link between high ambient temperatures and worker output (but not
worker attendance) is broken in workplaces with climate control. These ‘no-effect’ cases are
consistent with our hypothesized mechanism of heat stress and suggest that climate control
technologies can provide some adaptation in the workplace. Of course such adaptation is
costly and therefore only selectively adopted. Through a survey of 150 diamond cutting and
polishing firms, we study investments in air-conditioning and find that climate control is

adopted most frequently for labor intensive processes with high value addition. This opens
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up an interesting set of questions relating to the costs of adaptation and the distributional

effects of temperature changes on the labor force. !

Our empirical estimates are consistent with effect sizes observed in both laboratory evidence
and country panel studies (Dell, Jones, and Olken, 2014). This suggests that the physiologi-
cal impact of temperature on human beings may explain a significant portion of the observed
relationship between temperature and the economic output of poor countries, where climate
control is less common. Because our data come from settings that do not involve heavy
physical labor or outdoor exposure, the productivity impacts we identify may be quite per-
vasive. Temperatures over the Indian sub-continent have recorded an average warming of
about 0.91 degrees between 1971-75 and 2005-2009. Based on our empirical estimates, this
warming may have reduced manufacturing output in 2009 by 3 percent relative to a no-
warming counterfactual, an annual economic loss of over 8 billion USD (Section 5). These
estimates are conservative because they do not account for the costs of incurred adaptation

or capture the impacts of local urban heat islands.

The remainder of this paper is organized as follows. Section 2 summarizes the physiological
evidence on heat stress. Section 3 describes our data sources and Section 4 presents results
from firm level data and the national panel of manufacturing plants. Section 5 quantifies the
importance of these effects in the context of climate model predictions for India and Section

6 concludes.

2 Mechanisms

The physics of how temperature affects human beings is straightforward. Heat generated

while working must be dissipated to maintain body temperatures and avoid heat stress. The

I Also related is the question of how technology choice influences workplace temperatures. For example,
Adhvaryu, Kala, and Nyshadham (2014) argue that there may be productivity gains from low heat lighting
options such as LEDs.
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efficiency of such dissipation depends primarily on ambient temperature but also on humidity
and wind speed. If body temperatures cannot be maintained at a given activity level, it may
be necessary to reduce the intensity of work (Kjellstrom, Holmer, and Lemke, 2009; ISO,
1989).

Several indices of ambient weather parameters have been used to measure the risk of heat
stress. Most widely accepted is the Wet Bulb Globe Temperature (Parsons, 1993; ISO, 1989).
Directly measuring WBG'T requires specialized instruments. We therefore use the following

approximation in our analysis, whenever data on humidity is available.

WBGT = 0.567T4 + 0.216p + 3.38,
17.27T, ) (1)

= (RH/100) x 6.105 —_—
p = (RH/100) P (237.7+TA
Here T4 represents air temperature in degrees Celsius and p the water vapour pressure

calculated from relative humidity, RH.?

Laboratory studies show a non-linear relationship between temperature and the efficiency of
performing ergonomic and cognitive tasks. At very low levels, efficiency may increase with
temperature, but for wet bulb globe temperatures above 25 degrees Celsius, task efficiency
appears to fall by approximately 1 to 2 percent per degree (Dell, Jones, and Olken, 2014).
These levels are not considered unsafe from the point of view of occupational safety and are
commonly observed, especially in developing countries (Figure A.4).3 Seppanen, Fisk, and
Faulkner (2003); Hsiang (2010) provide a meta-analysis of this evidence. Similar effects have
also been observed in some office settings, such as call centers (Seppanen, Fisk, and Lei,

2006).

2Lemke and Kjellstrom (2012) compare different WBGT measures and show that this equation performs
well at approximating ambient WBGT.

3In some sectors, such as mining, temperature and humidity exposures can be high enough to create
serious health hazards. These settings have been long-used for research on heat stress and for designing
occupational safety regulation (Wyndham, 1969).
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While lab estimates provide a useful benchmark, they cannot directly inform us about the
effect of temperature in real world manufacturing environments where monetary incentives
embedded in wage contracts, the varied nature of tasks performed by a given worker, and
differing degrees of mechanization all mediate worker productivity. Activity on the factory
floor also rarely requires exertion nearing physical limits and takes place indoors or in shielded
conditions. Moreover, the economic costs of reductions in the efficiency of physical processes
depends on the value they add to the final product. Productivity is also not the only channel
through which the quality of labor may change. Heat stress may also influence absenteeism
due to greater morbidity or time allocation choices (Dell, Jones, and Olken, 2014). The
data we collect - described next - allow us to separately examine these multiple channels in

varying work environments and over different timeframes.

3 Data Sources

We use five independent datasets to investigate our heat stress hypothesis. These together
span several manufacturing processes, varying in their degree of mechanization, climate

control, labor intensity and value addition.

We compile high frequency daily data on worker output and attendance from plants in three
industries: cloth weaving, garment manufacture and rail production. We exploit differences
in technologies and wage contracts across these plants to estimate the impact of heat stress in
the workplace. Cloth weaving and garment manufacture are both labor-intensive but weaving
workers are paid piece rates while garment workers receive monthly salaries. Climate control
is absent in the weaving units and present in some of the garment units. The rail mill is
highly mechanized with some climate control, and a large fraction of worker-time is spent

supervising and correcting automated processes.
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In addition to collecting worker output data, we conducted a survey in 150 diamond cutting
and polishing plants in Surat. These units invest substantially in air-conditioning but do so
selectively for some parts of the factory. We examine whether there is greater deployment
of climate control in tasks which are relatively labor intensive or those that involve signif-
icant value addition. Such a pattern would be consistent with the hypothesis that these

investments represent costly adaptation against worker heat stress.

Each of our micro-data sites represents an important manufacturing sector in the Indian and
global economies. Textiles and Garments employ 12 percent and 7 percent of factory workers
in India, 90 percent of world diamond output passes through the town of Surat where we

conducted our survey, and the Bhilai rail mill is the largest producer of rails in the world.*

Our last data set is a nationally representative panel of manufacturing plants across India.
The data comes from the Annual Survey of Industry, a government database covering all
large factories and a sample of small ones. We use the ASI data to construct a panel of
manufacturing plants with district identifiers and match annual data on the value of plant
output, assets and inputs over the period 1998-2008 with average annual temperatures for
the district in which the plant is located. This allows us to estimate temperature effects
over multiple regions and sectors and over a longer time period than possible with our other
data sets. Figure A.1 shows the geographic distribution of ASI plants and locations of the

micro-data sites.

Additional details on data construction and definitions of our key variables are given below.

3.1 Production and Attendance Data

Weaving Units: We use daily output and attendance for workers in three cloth weaving

4For employment shares, see Annual Survey of Industries, 2009-10, Volume 1. Figures for the Surat dia-
mond industry are taken from (Adiga, 2015) and those for the rail mill are from http://www.sail.co.in/bhilai-
steel-plant /facilities.
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units located in the city of Surat in the state of Gujarat in western India. Each worker is
responsible for operating between 6 to 12 mechanized looms producing woven cloth. Workers
walk up and down between looms, occasionally adjusting alignment, restarting feeds when
interrupted and making other necessary corrections. The cloth produced is sold in wholesale
markets or to dying and printing firms. Panel C in Figure A.2 is a photograph of the

production floor in one of these units.

Protection from heat is limited to the use of windows and some fans. Workers in all units
are paid based on the meters of cloth woven and no payments are made for days absent.
Payment slips are created for each day worked and we assemble our data set by digitizing
these slips for the financial year April 2012-March 2013. Our data include all 147 workers
who worked at any point during this year. For most types of cloth, the per-meter payment
was about 2 rupees during this period and the median amount woven per worker was 125

meters of cloth per day.’

Garment Manufacturing: These data come from eight factories owned by a single firm
producing garments, largely for export. Six of the factories we study are in the National Cap-
ital Region of Delhi (NCR) in North India, the other two are in Hyderabad and Chhindwara
in South and Central India respectively. In each of the factories, many different garments
are produced, mostly for foreign apparel brands. Production is organized in sewing lines
of 10-20 workers and each line creates part or all of a clothing item. The lines are usually
stable in their composition of workers, although the garment manufactured by a given line

changes based on production orders. Panel B in Figure A.2 shows a typical sewing line.

Measuring productivity is more difficult here than for weaving units because garment output
depends on the complexity of operations involved. However, the garment export sector is

highly competitive and firms track worker output in sophisticated ways. We rely on two

5Since payments are made strictly based on production, incentive effects on output arising from non-
linearities caused by minimum wages can be ignored (Zivin and Neidell, 2012).
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variables used by the firm’s management for this purpose: Budgeted Efficiency and Actual
Efficiency. The first of these is an hourly production target based on the time taken for the
desired operations to be completed by a special line of ‘master craftsmen’. The second is the
output actually produced each hour. We use the Actual Efficiency, averaged over each day,
as a measure of the combined productivity of each line of workers, and use the Budgeted

Efficiency as a control in our regression models.

There are a total of 103 sewing lines in the eight plants and our data cover working days
over two financial years, April 2012 to March 2014. The median for days worked by a line is
354 and we have a total of 30,521 line-days in our data set. In addition to line level output
data we also collected attendance records for all sewing workers from firm management.
To restrict attention to regular, full-time employees, we identify 2700 workers for whom
attendance records were available for at least 600 days over the two year period of our data.
These employees provide a stable cohort whose daily attendance decisions we are able to
study. Unlike weaving workers, these workers were paid monthly wages and therefore not

directly penalized for small variations in productivity or occasional absenteeism.

During the period we study, the firm was in the process of installing centralized climate
control in plants. In five manufacturing units in the NCR, production floors had already
been equipped with air washers. These devices control both temperature and humidity to
reduce wet bulb globe temperatures. One manufacturing unit in the NCR did not have
air-washers installed until 2014. Workers at this site only had access to fans or evaporative
coolers which are not effective dehumidifiers. The two plants in Hyderabad and Chhindwara

were also without air-washers but average temperatures in these areas are lower than in the

NCR.

We use the gradual roll out of air washers within the NCR units to investigate whether work-
place climate control changes the relationship between temperature and worker output. We

do this by estimating heat effects separately for plants with and without climate control and
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for the two plants outside the NCR. Although this variation is not experimentally induced,
the comparison of temperature-productivity relationships across these sites helps understand
the ability of firms to mitigate temperature impacts by investing in workplace cooling. Even
with climate control, workers continue to be exposed to uncomfortable temperatures outside.
This could influence their health and productivity at work, as well as their attendance even

when factory floor temperatures are effectively controlled.

Rail Production: The rail mill at Bhilai has been the primary supplier of rails for the
Indian Railways since its inception in the 1950s. It is located within one of India’s largest
integrated steel plants in the town of Bhilai in central India. Rectangular blocks of steel called
blooms are made within the plant and form the basic input. They enter a furnace and are then
shaped into rails that meet required specifications. When a bloom is successfully shaped into
a rail, it is said to have been rolled. When faults occur, the bloom is referred to as cobbled
and is discarded. Apart from rails, the mill produces a range of miscellaneous products,
collectively termed structurals that are used in building and infrastructural projects. Panel

A in Figure A.2 shows part of the production line.

There are three eight-hour shifts on most days, starting at 6 a.m.® Workers are assigned
to one of three teams which rotate across these shifts. For example, a team working in the
morning shift one week, will move to the afternoon shift the next week and the night shift
the following week. The median number of workers on the factory floor from each team is
66. We observe the team present for each shift as well as the number of blooms rolled, over
all shifts on all working days in the period 1999-2008. Overall we obtain production data
for 9172 shifts over 3339 working days and use this to examine temperature-productivity
relationships. For a shorter time period, we also obtain personnel records which allow us
to relate temperatures to plant level absenteeism. These cover the period between February

2000 snd March 2003 and we use these to obtain a daily count of unplanned absences for

5Some days have fewer shifts because of inadequate production orders or plant maintenance.
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the plant for 857 working days in this period.”

The bloom production process is highly mechanized and runs continuously with breaks when
machinery needs repair or adjustment for a different size of rails or for switching to structural
products. Workers who manipulate the machinery used to shape rails sit in air-conditioned
cabins. Others perform operations on the factory floor. This is the most capital intensive
of our four data sites and the combination of automation and climate control may limit the

effects of worker heat stress on output.

Diamond Polishing: In August 2014, we surveyed a random sample of 150 firms in the
city of Surat, the same location as our weaving units. The sample was selected from over
500 manufacturing units formally registered with the Surat Diamond Association. Diamond
polishing is an interesting contrast to weaving. Like weaving, diamond units are small and
labor-intensive. Value added in these plants is however much higher than in the weaving
units. Perhaps for this reason, diamond firms in Surat were found to have invested substan-

tially, but selectively, in air-conditioning.

Diamond polishing can be broadly classified into five distinct operations: (i) sorting and
grading, (ii) planning and marking, (iii) bruting, (iv) cutting, (v) polishing. While most
firms do undertake all operations, the importance of each of these varies. For example,
smaller firms do more sorting and cutting and transfer the stones to larger firms for final
polishing. Mechanization and the intensity of labor also varies by unit and process. We
asked each firm for information on the use of air-conditioning in each of the five operations
listed above. They were also asked to rate, on a scale of 1-5, the importance of each of these
processes to the quality of final output and specify the number of workers and the number

of machines needed for each operation.

We were not able to obtain worker level productivity measures from diamond firms. However

"These data were first used in Das et al. (2013), which also contains a detailed account of the production
process in the mill.

10
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we use this survey data to estimate the probability of climate control investments as a

function of the characteristics of different manufacturing processes within the firm.

Panel of Manufacturing Plants: The Annual Survey of Industry (ASI) is compiled by the
Government of India. It is a census of large plants and a random sample of about one-fifth
of the smaller plants registered under the Indian Factories Act. Large plants are defined
as those employing over 100 workers.® The ASI provides annual information on output,
working capital and input expenditures in broad categories, as well as numbers of skilled
and unskilled workers employed. The format is similar to census data on manufacturing in

many other countries.”

A drawback of the ASI from our perspective is that small manufacturing enterprises not
registered under the Factories Act are excluded. These units contribute about 5% to Indian
net domestic product and may have more limited means to adapt to temperature change.'’
The weaving units we study are an example. Plants surveyed in the ASI thus primarily
inform us about temperature sensitivity within larger firms with presumably greater adaptive

capacity.

We use ASI data for survey years between 1998-99 to 2007-08 to create a panel of 21,525
manufacturing plants matched to districts within India. Districts are the primary admin-
istrative sub-division of Indian states. There are occasional changes in district boundaries
over time. There were 593 districts at the time of the 2001 Census and we place each plant
within its 2001 district boundary. The final panel is unbalanced, with large firms appearing
every year and smaller firms appearing in multiple years only if they are surveyed. In the

Appendix we describe in greater detail the data cleaning operations and procedures used to

8For some areas of the country with very little manufacturing, the ASI covers all plants, irrespective of
their size.

9See Berman, Somanathan, and Tan (2005) for a discussion of the variables and some of the measurement
issues in the ASI.

10This figure has been computed using data from the Central Statistical Organisation cited in Sharma
and Chitkara (2006). The informal sector contributes 56.7% to net domestic product and about 9% of the
sector’s output comes from manufacturing enterprises.

11
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construct the panel.

3.2 Meteorological Data

We match our daily micro-data from weaving, diamond and garment firms to local temper-
ature, precipitation and humidity measures from public weather stations in the same city.

We use these to compute daily WBGT using (1).

For the steel plant at Bhilai no public weather station data was available for the period
for which we have production data. For this plant, and for all those in the ASI panel,
we rely on a 1° x 1° gridded data product of the Indian Meteorological Department (IMD)
which provides daily temperature and rainfall measurements based on the IMD’s network of
monitoring stations across the country. We use annual averages of these daily measures and
then use a spatial average over relevant points in the grid. For Bhilai, we use the weighted
average of grid points within 50 km of the plant, with weights inversely proportional to
distance from the plant. For the ASI plants, we do not have exact co-ordinates and average
over grid points within the geographical boundaries of the district in which the plant is

located.

A strength of this data is that it uses quality controlled ground-level monitors and not

11

simulated measures from reanalysis models."* A limitation is that it cannot be used to

estimate WBGT because it does not contain measures of relative humidity. In examining
heat effects on output for the steel mill and for plants in the ASI panel, we therefore use

only the dynamic variation in temperature and rainfall.'?

HSee Auffhammer et al. (2013) for a discussion of some of the concerns that arise when using temporal
variation in climate parameters generated from reanalysis data.

12Table A.2 in the Appendix provides results from an alternative approach where we use humidity values
from climate models and combine these with the IMD gridded temperatures to approximate WBGT for all
districts.

12
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4 Results

4.1 Temperature and Daily Worker Output

The physiological basis of heat stress suggests that temperature effects on productivity should
become apparent over fairly short periods of exposure. This makes daily data especially
valuable in isolating heat stress from other climate factors, such as agricultural spillovers or

demand shocks, that operate over longer time scales.

Our primary specification is:

log(Yia) = ci +vu + vy +ww + BWBGT;q X Dy + 0Riq + €a. (2)

Y;q denotes output produced by worker, line or team i on day d. Fixed-effects for the i
unit are «; and 7,7, vy, ww are indicators for month, year and day of the week, respectively.
Together, these control for idiosyncratic worker productivity levels and temporal and seasonal
shocks. R,y controls for rainfall experienced by the i** unit. To capture non-linearities in
the effects of heat-stress, we interact daily wet bulb temperature, W BGT;,, with a dummy
variable Dy for different temperature ranges. This allows us to separately estimate the
marginal effect on output for a degree change in temperature within different temperature
bins. We split the response curve into four wet bulb globe temperature bins: < 20°C,
< 20°C' — 25°C, < 25°C' — 27°C' and > 27°C. These breakpoints facilitate a comparison of

our estimates with those in Hsiang (2010).

For the Bhilai rail mill we have three output measures per day corresponding to different
shifts across which three worker teams are rotated. Since productivity varies across night
and day shifts, we use a shift-day as our unit of observation and control for nine team-shift

fixed effects, ays. We do not observe hourly temperatures so all shifts in a particular day are

13
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assigned the average daily temperature.

Table 1 presents our estimates for temperature effects on worker output. Column 1 is based
on the rail mill data, columns 2-4 on garment manufacturing lines and columns 5-6 on cloth
output from weaving units. Estimates from climate-controlled plants are shaded. Columns
2 and 3 offer a within-firm comparison of co-located production units belonging to the same
firm but with different levels of climate control. This was possible because the roll-out of
climate control technology took place during the period for which we collect data. Column
4 presents data from garment plants located in the milder climate of Hyderabad in South
India and Chhindwara in Central India.!®> The most systematic productivity effects are
observed for the highest temperature bin. Above 27 degrees, a one degree change in WBGT
is associated with productivity declines ranging from 3.7 percent for garment lines in the
milder climate of South and Central India, to over 8 percent for garment lines and weaving

units without climate control. There is no apparent effect for units with climate control.
[Table 1 about here.]

We also estimate the output-temperature relationship more flexibly using cubic splines with
four knots positioned at the 20th, 40th, 60th and 80th quantiles of the temperature distribu-
tion at each location. Figure 1 shows the predicted impact of temperature on output using
these spline fits. Output at 25 degrees is normalized to 100%. The pattern of these results

is very similar to those in Table 1, although estimates are less precise.
[Figure 1 about here.]

The clearest evidence in support of the heat-stress hypothesis is obtained from the within-
firm comparison of NCR garment manufacturing units, with differing levels of climate con-

trol. Production lines on floors without access to air-washers show a drop in output with

13The median wet bulb globe temperature within days in the highest bin is greater in the NCR garment
plants (29.22 degrees) than in Hyderabad and Chhindwara (28.21 degrees).

14
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increasing wet bulb globe temperatures especially in the highest temperature bins. This
link is broken with climate control. Garment lines located in Hyderabad and Chhindwara -
where air-washers were not installed - also show a drop in efficiency with increasing wet bulb
temperatures but the estimated response is smaller, most likely due to the more moderate

ambient temperatures in these areas relative to Delhi.

In small weaving units of Surat, a similar non-linear pattern of temperature impact on
worker output is observed with negative impacts on days with high wet bulb temperatures.
In contrast, in the highly mechanized rail mill, there is no evidence that output is affected
by very high temperatures and our point estimates are small and often not statistically
significant from zero. The production of rails involves the heating and casting of steel which
may be directly influenced by ambient temperatures even if there is no effect on workers.

This may be one reason for the more complicated response function seen in the rail mill.'#

We also note that the output of weaving workers does not seem influenced by moderate
temperatures while there is a more uniform temperature-output relationship for sewing lines
in garment units without climate control. Although these two work environments differ on
many dimensions, one possible explanation may be the nature of the wage contract. While
garment workers are paid a monthly wage, weaving workers are paid per unit of cloth woven

and therefore have a strong incentive to sustain high output if possible.

4.2 Worker Absenteeism

Recent evidence from the United States finds small reductions in time allocations to work

on very hot days (Zivin and Neidell, 2014). Such changes in attendance could affect labor

14These estimates should be robust to any effects of power outages on output. The data in all panels of
Figure 1 comes from manufacturing settings with power backups. Additionally, for garment manufacturing
in the NCR, we compare co-located plants for whom the incidence of power outages should be similar.
Weaving plants reported that the electricity utility in Surat occasionally scheduled pre-announced weekly
power holidays on Mondays. Any effect of such power outages, notwithstanding the availability of back-up
power, is controlled for in our estimates by including day of week fixed effects.

15



Manuscript for Review

input costs independently of actual workplace performance. In the hot temperature and low
income environments we study, there are many channels through which temperatures could
influence absenteeism. Sustained high temperatures may lead to fatigue or illness. Longer
term seasonal variations could create differences in disease burden or influence occupation

choice. These effects are likely to depend on both contemporaneous and lagged temperatures.

To investigate this possibility, we exploit the detailed histories of worker attendance that
we collect for weaving plants in Surat, garment manufacture units in the NCR and the rail
mill in Bhilai. For all three cases we construct a time series measure of the total number
of worker absences every day.!® These absence records span two years (2012 and 2013) for
garment plants, three years (Feb 2000 to March 2003) for the rail mill and one year (April
2012 to March 2013) for Surat weaving units. This micro-data can be used to investigate

the relationship between absenteeism and temperature.

As we have noted, exposure to heat may affect the decision to miss work through both con-
temporaneous and lagged temperatures. An exposure-response framework is thus a natural
way to model this relationship. Denoting the number of absences in a cohort of workers

observed on day ty by A;,, we can model

At() =« + BEt() _I_ ,tho + 6t()

Here Ey, = f(Wy,, ..., Wi —k) is the accumulated heat exposure at time ¢, that depends on
the history of all wet bulb globe temperatures experienced over the previous K days. vXj,
denotes other covariates (such as festival seasons) that might change A;,. In general E;, will
vary non-linearly with both the level of wet bulb globe temperatures, W;,_, as well as the

lag period k.

15Tn the case of the rail mill and garment plants an absence is defined as a recorded leave day. In the
case of daily wage weaving workers an absence is defined as any day when no payments were recorded for a
worker. Absences for garment workers are calculated for workers observed for at least 600 days over the two
year period.

16
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Different assumptions on how to model exposure lead to different models of varying gener-
ality. A simple specification is to assume that exposures are proportional only to contem-
poraneous temperatures so that £ = gW,,. This assumes that lagged temperature histories
do not have cumulative or sustained effects on the propensity to miss work. Because it
is plausible that temperatures experienced in the recent past might influence absenteeism,
we also estimate a second specification. We set exposures E equal to the mean wet bulb
globe temperature experienced over the previous k£ = 7 days and allow for non-linearities
in response by separately estimating [ for different quartiles of observed thfo We report
estimates from both models (setting k¥ = 7) in Table 2, additionally controlling for month

fixed effects, year fixed effects, day of week fixed effects and rainfall.

We find evidence that sustained high temperatures are associated with an increase in ab-
senteeism for workers in the rail mill and garment plants. For the highest quartile of lagged
weekly temperatures, a 1°C' increase in the average weekly WBGT is associated with a 10
percentage point increase in absences for rail mill workers and a 6 percentage point increase
for garment workers. In contrast, we do not see absenteeism effects for weaving workers,
perhaps because of their very different wage contracts. Recall that in both garment and rail
plants, workers are full-time employees paid a monthly wage, while in the weaving units they
are daily wage workers who are not paid when they do not come to work. This means that
the marginal cost of an additional absence is relatively high for weaving workers, while it

may be small or zero in the other two cases.

Interestingly, increased worker absenteeism is visible even where the work-place itself uses
climate control. These investments may thus allow only partial adaptation to the impact of
temperature on labor. Although they mitigate temperature related productivity losses while

at work, they may not be sufficient to prevent changes in attendance.

[Table 2 about here.]
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Modeling exposure using average weekly temperatures involves some restrictive assumptions.
Temperatures at different lag periods may not contribute equally to the propensity to miss
work. Also weeks with similar average temperatures may have very different impacts upon
workers depending on the levels of daily temperatures within the week. It is possible to
estimate a more flexible model that relaxes these assumptions and also gives us more insight
into how absenteeism is affected by both the levels of ambient temperatures and the length
of time for which a hot spell continues. Both these factors may be changing as a function
of anthropogenic forces. Anthropogenic climate change is expected to lead to a significant
increase in the probability of extreme temperature days (Fischer and Knutti, 2015). Urban
heat islands have already led to sustained warming in hotspots within many cities (Mohan

et al., 2012; Zhao et al., 2014).

Rather than specifying upfront how temperatures contribute to exposure, the exposure-
response relationship can be flexibly modeled using a non-linear distributed lag model (Gas-
parrini, 2013). Distributed lag models represent F;, as a weighted sum of lagged wet bulb
globe temperatures so that Fy, = oWy, + mWy,—1 + ... + T W,k with weights 7 related to
each other by some flexible function whose parameters can be estimated from the data'6. A
non-linear DLM extends this idea by allowing the contribution of temperature to total ex-
posure to vary with both lag durations (k) as well as temperature levels W.'7 We follow the
procedure in Gasparrini (2013), using two independent third order polynomials to describe
how the levels and lag period of ambient temperatures contribute to cumulative exposure

E,, at time t; and estimate the parameters of this model.

We can now use this model to simulate predicted changes in absenteeism under different

16T the weekly average model, these weights are 1 for K <= 7 and 0 for K > 7. More generally we could
let 7, = g(k).

"The net exposure can then be described by a bidimensional function E(W,k) = Z(If FagWy—k, k)
where f describes the effect of temperature levels W on exposure and g describes the effect of lag period
k. Gasparrini (2013) shows how this can be represented as the product of temperature histories with a
cross-basis matrix linear in parameters for different choices of functions f and ¢ and thus estimated using
least squares.
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specified histories of WBGT exposures. Figure 2 displays two cross-sections. The left column
shows the predicted change in the logarithm of daily absences for a 1°C increase in WBGT,
over a 25°C' reference, sustained for k days (k ranging from 1 to 10). For workers with
long term contracts - rail mill (Panel A) and garment firms (Panel B) - absences increase
approximately linearly with every additional day of elevated temperatures at the rate of
approximately 1 to 2 percent per day. We interpret this response curve to suggest that as
the duration of hot spells is increased, the probability of absenteeism rises steadily. In the
right column, we simulate the variation in absenteeism for a fixed exposure duration (10
days) at varying levels of temperature. We see clear evidence that temperatures above 25
degrees drive the absenteeism response. As with the simpler linear models of Table 2, we

see no effect on daily wage workers.

Our analysis here is restricted to short-run (10-day) responses of attendance to temperature
shocks. Although our data does not support a detailed investigation of longer run responses,
Figure A.3 in the Appendix suggests there are seasonal reductions in the availability of daily
wage workers (but not full-time contracted workers) during high temperature months. This
may reflect the fact that daily wage workers have greater flexibility to shift occupations

relative to workers on full time contracts.

[Figure 2 about here.]

4.3 Adaptation and Investments in Climate Control

An indirect way of testing the heat-stress mechanism is by observing the way in which plants
make investments in climate control technologies. We would expect that plants that are
concerned about heat impacts on workers would preferentially invest in cooling for production

activities that are high value and labor intensive.
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Our survey of diamond polishing units reveals frequent investments in air-conditioning but
also substantial variation in the deployment of this climate control across different production
areas within the same plant. We use our survey data to estimate a logit model of the
probability of plants using air-conditioning for any stage in their production process as a
function of (i) the share of workers employed in the process (worker intensity), (ii) the
share of machines used within a process (mechanization intensity) and (iii) the self-reported
importance of the process in determining stone quality (a proxy for value addition). We
control for the total number of workers (a proxy for firm size) and the years since the first

air-conditioning investment.!®

Figure 3 summarizes our results. We find that diamond polishing units in Surat are sig-
nificantly more likely to use air-conditioning for production tasks they consider important
in determining product quality and for tasks that are labor-intensive. These patterns are
consistent with a model of adaptive investments where firms choose to preferentially cool

high value and labor intensive processes.’

[Figure 3 about here.]

4.4  Annual Manufacturing Output

In Section 4.1 we directly investigated the relationship between temperature and worker out-
put. The effect sizes we identify are similar to those documented in the literature investigat-
ing changes in country level economic output with temperature. But do these temperature
effects remain when we examine output data over longer periods and aggregated over an

entire manufacturing unit rather than a single worker or group of workers?

18We also estimate a model with firm fixed effects, identified only using within plant variation across
process areas, and find that our results remain similar.

19Tt is possible that investing in air-conditioning reflects a form of compensation to attract higher quality
workers rather than an effort to offset negative temperature impacts. This explanation seems unlikely because
wages are low, workplace activities are not physically taxing and workers move between different production
areas. Wage increases would therefore probably be preferred to equivalent expenditures on air-conditioning.
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To answer this, we examine the relationship between district temperatures and annual output
in our nation-wide panel of manufacturing plants. We focus on testing for non-linearities in
output response since our hypothesized mechanism of heat stress should depend mostly on

exposure to high temperatures.

In the ASI panel we observe annual - as opposed to daily - plant output. However we do
observe temperatures for every day within the year. Suppose V(Ty), is the monetary value
of plant output as a function of daily temperature, T;. If we assume that the non-linear
response of output to temperature can be approximated using a stepwise linear function of

production in temperature we can write:

V(Ty) = V(To) + > BrDi(T). (3)

k=1

Dy(T;) is the number of degree days within a given temperature bin and its coefficient
measures the linear effect of a one degree change in temperature on output, within the kth
temperature bin. Aggregating this daily output as a function of daily degree days over all

days in the year suggests the model in Equation 4 which can be taken to the data.

N
Vit = a; + 9 + wKy + Z BeDigr, + oWir + O Rt + €44, (4)

k=1
Here Vj; is the value of output produced by plant ¢ during financial year ¢, «; is a plant fixed
effect, v, are time fixed effects capturing aggregate influences on manufacturing in year t,
K is total working capital at the start of year ¢, W;; is the number of workers and R;; is
rainfall in millimeters. D;; is the number of degree days in year t that lie in temperature

bin k, calculated for the district in which plant i is located.?’ We use three temperature

20Degree days are commonly used to summarize the annual temperature distribution and carry units of
temperature (Jones and Olken, 2010). A day with a mean temperature of 23 degrees contributes 20 degrees
to the lowest temperature bin and 3 degrees to the [20,25) degree bin.
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bins with 7' < 20°C, T € [20°,25°),T > 25°C. [\ is the output effect of a one degree rise
in temperature within bin k. If heat stress causes output declines, we would expect [, to
be close to zero for moderate temperatures (or even positive for low temperatures) while for
higher degree-day bins we should see negative coefficients. We use daily mean temperatures

in our specifications.?!

We use working capital available to the plant at the start of the financial year as an input
control because it determines resources available for purchasing inputs and is also plausibly
exogenous to temperatures experienced during the year and to realized labor productivity.
This would not be true of actual labor, energy or raw material expenditures during the year
because lower labor productivity due to temperature changes may also reduce the wage bill

under piece rate contracts and be accompanied by lower raw material use.

We estimate (4) using both absolute output as well as log output as outcome variables.
When using the former, coefficients are expressed as proportions of the average output level.
Results are in Table 3. Columns (1) and (3) contain estimates from our base specification.
Columns (2) and (4) control for the reported total number of workers W;; on the right hand
side. These are not our preferred estimates because employment data is both less complete

and may contain measurement errors.??

The results provide clear evidence of a non-linear effect of temperature on output. Output
declined by between 3 and 7 per cent per degree above 25°C, depending on the specification
used. For comparison with the literature, we also estimate a linear model and report results
in the Appendix in Table A.1. For the most conservative specification, with both capital
and worker controls, we estimate a 2.8 percent decrease in output for a one degree change in

average annual temperature. Dell, Jones, and Olken (2012) find a 1.3% decrease in GDP per

2IMaximum temperatures are on average 6 °C higher than mean temperatures so a day with a mean
temperature of 25 °C can imply a substantial portion of time with ambient temperatures above 30 °C.

22Employment numbers are frequently missing in the ASI data. Plants may also under-report labor to
avoid the legal and tax implications associated with hiring more workers.
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degree change in annual temperature in countries that were below the global median GDP
in 1960, while Hsiang (2010) finds the corresponding number to be 2.4% in the Caribbean

and Central America.

[Table 3 about here.]

Heterogeneity in Temperature Response

Heat stress on labour should generate greater production declines in manufacturing plants
with a high labor share of output and limited climate control. To investigate whether
temperature has heterogeneous effects on productivity based on these characteristics, we
calculate for each plant in our dataset the ratio of wages paid over every year to output in
that year and also the ratio of electricity expenditures to total cash on hand at the start
of the year (our measure of capital). Electricity consumption in this instance is used as an
imperfect proxy for climate control, which is typically quite electricity intensive, since we do

not observe such investments directly in the annual survey data.?

We then classify our plants by the quartile to which they belong on each of these measures,
interact these quartile dummies (Q;) with mean temperature and estimate Equation (5)
separately for labor shares and electricity quartiles to examine whether temperature effects

are heterogeneous in the manner we expect.

Vie =a; + v + WKy + BTy X Qi + 0Ry + €3 (5)

We find that output from plants with higher labor shares is indeed more strongly affected

by temperature and that those with greater electricity consumption appear less vulnerable

23Section 4.1 provides more robust evidence since we observe the climate control technologies that are
actually adopted.
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(Table 4).

[Table 4 about here.]

Robustness Checks: Price Shocks and Power Outages

In using annual plant output data, we might be concerned about other pathways by which
temperature may affect output. For example, temperature shocks might change the prices

of plant inputs, especially those coming from agriculture.

Although most of these price shocks should be captured by year fixed-effects, there may be
local price changes that vary with local temperatures and affect only local inputs. The ASI
surveys allow us to investigate this to a limited degree. Plants are asked to report their most
common input materials and the per unit price for these inputs each year. We create a price
index defined as the log of the average price across the three most common inputs used by
each plant. We use this index as the dependent variable in a fixed-effects model similar to
Equation (4). We find no evidence that input prices change in high temperature years after

controlling for year fixed effects. These results are in Appendix Table A.3.

A second confounding factor in the ASI data is the reliability of power supply. It is possible
that power supply to a plant might be influenced by local temperature shocks. We control
for the probability of outages using a measure of state-year outage probabilities for India
constructed in Allcott, Collard-Wexler, and O’Connell (2014). We find our point estimates

across temperature bins remain very similar (Appendix Table A.3).
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5 The Economic Costs of Gradual Warming

The Indian Meteorological Department has documented a gradual warming trend across
most parts of the country (IMD, 2015). We average mean temperatures and degree days
above > 25°C and find that between the five year period from 1971-1975 and 2005-2009,
temperatures have risen by an average of about 0.91 degrees across India. Combining this
with the estimated mean effect of temperature on output from the nation-wide ASI panel
(3.3 percent reduction per degree from Column 5 of Table A.1), we estimate that observed
warming in the last three decades may have reduced manufacturing output by about 3
percent. The manufacturing sector contributed about 15 percent of India’s GDP in 2012
(about 270 billion USD), so a 3 percent decline in output implies an economic loss of over 8

billion USD annually relative to a no-warming counter-factual.

To the extent that this estimate ignores adaptive costs already incurred, it may be an under-
estimate of the full costs imposed by temperature changes in recent years. Adaptive actions
might include air conditioning, shifting manufacturing to cooler regions, urban planning
measures designed to lower local temperatures (green cover, water bodies), building design
modifications (cool roofs) and so on. Adaptation could also include techniques to reduce
the intensity of work, or the use of economic incentives to encourage worker effort. Recent
work also suggests adaptive possibilities from the use of LED lighting (Adhvaryu, Kala, and

Nyshadham, 2014). Many of these measures are neither easy nor costless.

These measures of warming may also underestimate the impact of urban heat island effects.
Heat island effects in urban areas have already led to local temperature hotspots that can
be more than five degrees warmer than surrounding areas (Mohan et al., 2012; Zhao et al.,
2014). Since many manufacturing units are located in urban hotspots, this source of surface

warming may be very significant to realized productivity.

Historical temperature changes aside, the economic impact of warming due to climate change

25



Manuscript for Review

is likely to be greatest in regions of the world that also have relatively high humidity. Panel A
of Appendix Figure A.4 reproduces a map of annual wet bulb temperature maximums from
(Sherwood and Huber, 2010). Indian summers are among the hottest on the planet, along
with those in the tropical belt and the eastern United States. The areas in red in Figure
A .4 all experience maximum wet bulb temperatures that are above 25°C'. This suggests that
- absent adaptation - an increase in the frequency or severity of high WBGT days might
rapidly impose large productivity costs in these regions. Recent temperature projections for
India, under business-as-usual (between RCP 6.0 and RCP 8.5) scenarios, suggest that mean
warming in India is likely to be in the range of 3.4°C' to 4.8°C' by 2080 (Chaturvedi et al.,

2012).

6 Conclusions

We use primary micro-data collected from various work environments to show that elevated
local temperatures can have a significant negative impact on worker productivity and labor
supply. Our data come from settings that do not necessarily involve heavy physical labor
or outdoor exposures and the effects we identify remain visible on both daily and annual
time-scales, at both the individual worker and manufacturing plant level. This suggests
that the impact of temperature on labor may be widely pervasive. In many settings high
temperatures may operate as a tax on labor and may therefore directly influence long run

rates of economic growth.

Climate change projections for India, under business-as-usual scenarios (between RCP 6.0
and RCP 8.5), suggest that mean warming in India is likely to be in the range of 3.4°C
to 4.8°C by 2080. Extreme events excepted, the economic impact of global warming has
been documented mostly through its effect on agricultural output, where high temperatures

are associated with lower crop yields(Lobell, Schlenker, and Costa-Roberts, 2011; Schlenker
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and Roberts, 2009; Mendelsohn and Dinar, 1999; Auffhammer, Ramanathan, and Vincent,
2006). Indeed the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (Field et al., 2014) acknowledges that ‘Few studies have evaluated the possible im-
pacts of climate change on mining, manufacturing or services (apart from health, insurance,
or tourism)’. Our evidence shows that gradual temperature change may impose costs in
the manufacturing sector, either via its effect on labor productivity or the energy costs of
adaptation technologies. Moreover, climate change is not the only reason to be concerned
about temperature change. Although scientists have documented the role of urbanization in
generating significant local warming(Zhao et al., 2014), relatively little attention has been
paid to the economic implications of this phenomenon. Satellite based studies in India’s
NCR show the presence of urban hotspots with temperature elevations of greater than five
degrees celsius (Mohan et al., 2012). Our results suggest that these heat islands may have
economically significant negative effects on productivity, especially since manufacturing ac-
tivity is generally located in urbanizing areas. These costs may be both large today and

growing quickly in developing countries which are also urbanizing at rapid rates.

The net economic costs due to heat stress will depend on how much adaptation takes place
and the variable and fixed costs of adaptation. We show that climate control appears effec-
tive in breaking the relationship between ambient temperatures and workplace productivity
(although not necessarily between temperature and absenteeism). However we also docu-
ment variable adoption of climate control across sectors, firms and even within firms (from
our survey of diamond cutting units in Surat). Since adaptation is costly, we should expect
selective adoption. An important area of future research involves understanding the determi-
nants of investment in adaptation, quantifying the productivity effects of technologies that
influence workplace temperatures (Adhvaryu, Kala, and Nyshadham, 2014), and evaluating
the potential of adaptive investments beyond air-conditioning (urban design, cool roofs and

building codes, developing urban water bodies and green areas and so on).
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Lastly, while our study has examined only manufacturing in India, temperature impacts
on worker productivity may be even more pronounced in the agricultural sector. Observed
productivity losses in agriculture that have been attributed by default to plant growth re-
sponses to high temperatures may in fact be partly driven by lower labor productivity. These

possibilities are yet to be researched.
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Figure 3: Marginal effect of covariates on probability of seeing climate control for a single process within
the diamond production line. Bootstrapped robust standard errors. Estimated using data on 750 processes
across 150 firms.
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Appendix: For Online Publication

A.1 Annual Survey of Industry Data Cleaning

Between 1998-99 to 2007-08 two versions of the ASI survey data were made available by
India’s Ministry of Statistics and Programme Implementation. The first variant is a panel
dataset containing plant identifiers without district identifiers. The second is a repeated
cross-section containing district codes without plant identifiers. We purchased both versions
and matched observations to generate a panel with district locations for each plant. This
allows us to match each plant to weather data that is available at the level of a district. We
dropped units that appear less than three times in the panel and performed additional data
cleaning operations described below to eliminate outliers and possible data errors. Our final
sample has 21,525 manufacturing units distributed all over India and spanning all major

manufacturing sectors (Figure A.1).

The following data-cleaning operations are performed on the ASI data to arrive at the panel

dataset used in our analysis:

1. We restrict the sample to surveyed units that report NIC codes belonging to the man-

ufacturing sector.

2. We trim the top 2.5 percent and bottom 2.5 percent of the distribution of observations
by output value, total workers, cash on hand at the opening of the year and electricity
expenditures. This is done to transparently eliminate outliers since the ASI dataset
contains some firms with implausibly high reported values of these variables and also

many plants with near zero reported output.

3. We remove a small number of manufacturing units that report having less than 10

workers employed. This represents a discrepancy between the criterion used to select
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the survey sample and reported data. Such discrepancies may be associated with false
reporting since firms with less than 10 workers are subject to very different labor laws

and taxation regimes under Indian law.

4. We mark as missing all plants with zero or negative values of output, capital, workers

or raw materials used.
5. We drop units that appear less than three times during our study period.
6. We drop plants where district locations change over the panel duration.
[Figure 4 about here.]

[Figure 5 about here.]

A.2 Additional Results

Annual Average Temperature and Manufacturing Output

The model in Equation 4 allowed for a non-linear (or piece-wise linear) output response to
temperature using four temperature bins. Here we present results from the simpler linear
specification. Much of the country-level literature estimates a linear model because degree
days cannot be computed for all countries. The estimates in this section facilitate a com-

parison of our findings with other studies. We estimate the following model:

Vie =i + v + wKiy + oWi + BT + O0Ry + €4 (6)

where T}, is the average temperature during the financial year ¢ (so that a year is calculated

from April 1 through March 31) and the other variables are as in (4). Estimates are in Table
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Al

[Table 5 about here.]

Using estimated WBGT with the ASI panel

The impact of temperature degree days on output in Table 3 used temperature data rather
than WBGT because measures of relative humidity are not available across all districts and
over the ten year period covered by our manufacturing plant panel. An alternative is to
approximate WBGT using estimates of average daily relative humidity from reanalysis mod-
els. This is not our preferred approach since reanalysis datasets are not normally calibrated
to accurately estimate relative humidity - certainly not on a daily basis - and therefore
this approach may increase rather than decrease measurement error, particularly since our

estimation relies on temporal variation rather than cross-sectional comparisons.

Nevertheless these results make for a useful robustness check. Table A.2 presents results
from models similar to those in Table A.1 using estimated WBGT measures calculated using
Equation 1 and using daily long run average measures of relative humidity from the NCEP/
NCAR reanalysis datasets. Note that this output provides an average measure for each day
but not temporal variation from year to year. This may be preferable in our context since
this means temporal variation is still driven by the better measured temperature parameters.
At the same time absolute temperatures are re-weighted across days of the year and across

spatial locations to account for varying relative humidity levels.

[Table 6 about here.]
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Price Shocks and Power Outages

In this section we report results investigating the robustness of the non-linear response of
output to temperature (reported in Table 3) to the inclusion of controls for power outage
probabilities. We also test to see whether local input prices can be shown to respond to local

temperature shocks to any significant degree. Table A.3 reports both results.

Column 1 provides results for a regression of a price index computed for each plant on
temperature (controlling for plant fixed effects). Formally we estimate the model below
where P;; is the log of the plant input price index and other variables are the same as in

Equation 6.

N
Pi=a; + 7+ wKy + Z Be Dy, + Wi + Riy + €3t (7)

k=1
Note that the price index P is created only for ASI plants where input price data was
reported. The price index is computed by averaging reported prices for the three most
important reported inputs for each plant in each year and taking the log of the resulting
price. Input price information is missing in about 28 percent of survey responses. In addition

we also drop the top 2.5 percent and bottom 2.5 percent of plants within the computed input

price distribution to remove outliers with very low or high reported input prices.

To control for power outages we download data made publicly available by (Allcott, Collard-
Wexler, and O’Connell, 2014) and reproduce their measure of state-year power outages that
they construct from panel data on state-wise assessed demand and actual generation re-
ported. We use this as a control for the intensity of power outages that might be experienced
by all plants in a state and introduce this as an additional control in a specification similar
to Equation 4. As Table A.3, Column 2 makes clear, our temperature response estimates

seem robust to the addition of the outages control.
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[Table 7 about here.]

Seasonal Patterns in Absenteeism

In interviews with weaving firm managers in Surat a frequent complaint related to the diffi-
culty of hiring daily wage workers for industrial work during the summer months. Managers
claimed that during the hottest months, daily wage workers preferred to go home to their
villages and rely on income from the National Rural Employment Guarantee Scheme rather
than work under the much more strenuous conditions at the factory. Some owners reported
that they were actively considering the possibility of combating this preference for less tax-
ing work by temporarily raising wages through a summer attendance bonus. However small
scale weaving units operate on very tight profit margins and do not necessarily have the

ability to raise wages very easily.

Figure A.3 in the Appendix suggests there may be some truth to this narrative. We see
seasonal reductions in the attendance of daily wage weaving workers (Panel A), concentrated
in high temperature months. These seasonal patterns are absent for the garment workers
who have long term employment contracts (Panel B). It is possible that formal employment
contracts - while reducing the costs to taking an occasional day of leave - significantly increase
the opportunity cost of switching occupations for extended periods of time. Thus, when
accounting for possible longer term responses to temperature, formal employment contracts
might do better at retaining labour than daily wage arrangements. This is an area that

would benefit from further research.

[Figure 6 about here.]
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Climate Model Forecasts for India

Panel A of Appendix Figure A.4 reproduces a map of annual wet bulb temperature max-
imums from (Sherwood and Huber, 2010). It is seen that Indian summers are among the
hottest on the planet, along with those in the tropical belt and the eastern United States.
The areas in red in Figure A.4 all experience maximum wet bulb temperatures that are above
25°C'. This suggests that - absent adaptation - an increase in the frequency or severity of
high WBGT days might rapidly impose large productivity costs in these regions. Recent
temperature projections for India, under business-as-usual (between RCP 6.0 and RCP 8.5)
scenarios, suggest that mean warming in India is likely to be in the range of 3.4°C' to 4.8°C

by 2080.

Panel B of Figure A.4, (left axis), plots projections of the long run change in the annual
temperature distribution for India from two climate models: (i) the A1F1 ”business-as-usual”
scenario of the Hadley Centre Global Environmental Model (HadGEM1) from the British
Atmospheric Data Centre and (ii) the A2 scenario of the Community Climate System Model
(CCSM) 3, from the National Center for Atmospheric Research. As is evident, the predicted
increase in degree days is concentrated in the highest temperature bins. We overlay (right axis
of Panel B of Figure A.4) our estimated marginal effects of temperature on manufacturing
output using the ASI data from Table 3 (column 2). The temperature range where we
estimate significant negative productivity impacts from an additional degree day is precisely

the range where the largest increases in degree days are predicted by climate models.

[Figure 7 about here.]
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Table A.3: Testing for price shocks and robustness to power outages

Dependent variable

Input Price Index Log Plant Output
(1) (2)
Below 20°C 0.044 —0.007
(0.085) (0.025)
20°C to 25°C 0.125 —0.039
(0.078) (0.025)
Above 25°C 0.066 —0.032*
(0.048) (0.017)
rainfall 0.004 0.002
(0.006) (0.002)
power outages —0.091
(0.087)
Number of Units 21,525 21,525
Mean Obs. per Unit 4.8 4.8
R2 0.685 0.202

Notes: 1. All models include plant and year fixed effects and capital controls; 2. Robust
standard errors correcting for serial correlation and heteroskedasticity (Arellano, 1987); 3.
Outages measure is a state level proxy as estimated in Allcott, Collard-Wexler, and O’Connell
(2014); 4. *p<0.1; **p<0.05; ***p<0.01
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Figure A.1: Distribution of ASI plants over Indian districts and location of micro-data sites
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Figure A.2: Production floor images from A: Rail mill, B: Garment manufacture plants, C: Weaving units
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Figure A.3: Boxplots of worker attendance by month for daily wage workers in weaving units (Panel A)
and regular workers in garment manufacture units (Panel B)
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Figure A.4: Panel A: Estimated annual wet bulb globe temperature maxima, 1999-2008. Source: Sherwood
and Huber (2010). Panel B: Projected temperatures under a business as usual climate change scenario for
India. Source: Burgess et al. (2011). Overplotted lines denote estimated productivity impacts of temperature
from Table 3, Column 3. Solid segments imply statistically significant effects
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