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1. INTRODUCTION 

Artificial markets have received some attention as a means of remedying 
market failure and, in particular, dealing with pollution from various 
sources. Arrow [I] has demonstrated that when externalities are present 
in a general equilibrium system, a suitable expansion of the commodity 
space would lead to Pareto optimality by bringing externalities under the 
control of the price system. Since his procedure is to define new commod- 
ities, each of which is identified by the type of externality, the person who 
produces it and the person who suffers it, his conclusion is pessimistic. 
Each market in the newly defined commodities involves but one buyer 
and one seller, and no forces exist to compel the behavior which would 
bring about a competitive equilibrium. 

On the other hand, many forms of pollution are perfect substitutes for 
each other. Sulfur oxide emissions from one power plant trade off in the 
preferences of any sufferer with sulfur oxide emissions from some other 
power plant at a constant rate. This fact leads to the possibility of 
establishing markets in rights (or “licenses”) which will bring together 
many buyers and sellers. Dales [2] has discussed a wide variety of such 
arrangements. 

Unfortunately, because of the elements of public goods present in most 
environmental improvements, it appears unlikely that markets in rights, 
containing many sufferers from pollution as participants, will lead to 
overall Pareto optimality. They can only serve the more limited, but still 

* Parts of this article appeared in my Ph.D. dissertation “Market Systems for the 
Control of Air Pollution,” submitted to the Department of Economics at Harvard 
University in May, 1971. Research on this thesis was partly supported under Grant 
No. AP-00842 from the Environmental Protection Agency to Walter Isard. I am also 
indebted to Kenneth Arrow and James Quirk for valuable advice. Needless to say, 
all errors are solely the responsibility of the author. 
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valuable, function of achieving specified levels of environmental quality 
in an efficient manner. An example of this function is found in a proposal 
by Jacoby and Schaumburg [6] to establish a market in licenses (or 
“BOD bonds”) to control water pollution from industrial sources in the 
Delaware estuary. The purpose of the present article is to provide a solid 
theoretical foundation for such proposals. Markets such as those proposed 
by Jacoby and Schaumburg will be characterized in a general fashion, and 
it will be proved that even in quite complex circumstances the market in 
licenses has an equilibrium which achieves externally given standards of 
environmental quality at least cost to the regulated industries. 

Two types of license are discussed: a “pollution license,” and an 
“emission license.” The emission license directly confers a right to emit 
pollutants up to a certain rate. The pollution license confers the right 
to emit pollutants at a rate which will cause no more than a specified 
increase in the level of pollution at a certain point. Since a polluter will 
in general affect air or water quality at a number of points as a result of 
his emissions, he will be required to hold a portfolio of licenses covering 
all relevant monitoring points. All such licenses are free transferable. 
A main thesis of this article is that the market in pollution licenses will be 
more widely applicable than the market in emission licenses. 

1.1. The Applicable Pollution Control Problem 

Consider the following problem of pollution control: In a certain region 
there is a set of IZ industrial sources of pollution, each of which is fixed in 
location and owned by an independent, profit-maximizing firm. The prices 
of the inputs and outputs of these firms are fixed, because the region is 
small relative to the entire economy. Therefore any change in the level of 
output of a firm or industry in the region will have only a negligible 
impact on the output of the economy as a whole, and prices will be 
unaffected by output changes in the region. These firms are represented 
by a set of integers I == {l,..., n}. 

Some regional standard of environmental quality in terms of a single 
pollutant has been chosen as a goal by a resource management agency. 
This standard is denoted by a vector Q* = (ql*,..., qm*). If air pollution 
is the particular area of interest, qi* might be an annual average concen- 
tration of sulfur dioxide at point j in an air basin. If water pollution is 
involved, qi* might be a measure of dissolved oxygen deficit at point j 
on a river. Since there is only one pollutant present in the region, the 
elements of Q* represent concentrations of the one pollutant at various 
locations. The development of a decentralized system for achieving 
environmental goals at a number of different locations is the most im- 
portant contribution of this article. 
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All pollution in the region arises from the industrial sources, each of 
which emits a single pollutant at the rate ei . The emission vector 
E = (e, ,..., e,) is mapped into concentrations by a semipositive matrix H, 
so that E . H = Q. The standard Q* imposes constraints on allowable 
emission rates of the form E . H d Q*. The problem of pollution control 
is to achieve Q* at least cost to the polluters. 

Some discussion of the limitations which the model places on the 
results presented is in order. The assumption that concentrations are a 
linear function of emissions is the only part of this problem which does 
not generalize easily. Therefore, the market in licenses to be described 
must be construed as applicable only in situations in which the assumption 
is approximately true. Fortunately, there are at least two important 
problems of pollution control in which it is true. One such is the manage- 
ment of dissolved oxygen deficit in a river. The DOD at a point down- 
stream of a source releasing BOD (bacteriological oxygen demand) 
effluent is proportional to the BOD released [6, 81. 

Management of concentrations of nonreactive atmospheric pollutants 
is another problem in which linearity is approximately true, as long as the 
variables to be related are average emission rates and average concen- 
trations [5]. In this case, which will be used in this article as the source of 
illustrative examples, a meteorological diffusion model provides the means 
of relating long-run average concentrations to average rates of emission. 
As formulated by Martin and Tikvart [I I], the model is based on an 
equation describing the shape of a smoke plume from an elevated source 
emitting at a constant rate with a wind of constant direction and speed. 
From this equation, the contribution of any source to concentration at 
any receptor can be calculated for given wind direction and speed. By 
taking the frequency distribution of wind direction and speed and 
appropriately modifying the predicted concentrations, one arrives at a 
theoretical relationship between average rates of emission and average 
concentrations [14]. 

The results of the diffusion model can be conveniently represented as an 
m x n matrix of unit diffusion coefficients, denoted 

H= 

The typical element states the contribution which one unit of emission by 
firm i makes to average pollutant concentration at point j. 

The assumption that only one pollutant is present in the region can be 
justified by appeal to the external decision on desired air quality. If 
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desired air quality in terms of one pollutant is independent of desired air 
quality in terms of any other so that, for example, the decision on the 
desirability of a certain concentration of sulfur dioxide is independent of 
the concentration of particulates permitted in the region, then nothing is 
lost. The management problem can be generalized by adding constraints 
representing emission vectors which achieve desired levels of many 
pollutants and joint production of pollution. In principle, it is solved in 
the same way as the one-pollutant system developed here. 

The assumption that all prices (except those associated with pollution) 
are unaffected by measures undertaken to control pollution is a common 
one in economic analysis of environmental problems. It is necessary to 
allow consideration of problems in isolation, and to avoid full-sized 
(and nonoperational) general-equilibrium models [9]. 

When this assumption is made, it is possible to define for each firm a 
single-valued function which associates a cost with any emission rate 
adopted by the firm. 

1.2. The Cost Function 

The purpose of this section is to construct a function relating each level 
of emission which might be adopted by the firm to its cost and to establish 
that the profit-maximizing firm will minimize this function. Moreover, 
it will be argued that no firm will ever choose a level of emission greater 
than that which is observed in the complete absence of regulation. 

Consider the typical multiproduct firm i. Let 

Gi(~il >..., YiR > ei) 

represent the minimum total cost of producing a vector of output 
(Yil ,..., yiR) and emissions e, . This is the cost incurred when inputs are 
optimally adjusted for that output and emission level. For the static 
analysis with which we deal, we can assume that both operating costs and 
an annual capital cost are included. Profit then will be 

Assume that Gi is convex and twice differentiable and that its domain is 
the positive orthant of the r + l-dimensional space of real numbers. 
Define ( JiI ,..., yi7 , Si) by 
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Now consider the case in which the firm must adopt an emission level ei 
and adjusts its output in order to obtain maximum profit for the fixed level 
of emission. Define yic by 

The cost to firm i of adopting emission level ei is defined as the difference 
between its unconstrained maximum of profit and its maximum of profit 
when emissions equal e, . That is, 

F,(ei) = 2 P,(yi, - i?ir) - [G&Jo ,..., LiR, ei) - GAja ,...,Y~R , cd]. 
T  

(1.1) 

This cost is composed of two terms: the change in gross income from 
altering the output vector and the change in costs from setting emissions 
at a nonoptimal level (with an optimal adjustment of output).’ 

Consider the variation in Fj(eJ when a small change is made in ei . 
Differentiating totally with respect to ei , we find 

dFi(ei) = ‘-- 1 (pr - 2) $$ dei + -$$ de, . (1.2) 
c 

We have assumed that output levels adjust to maximize profit for a given 
level of ei . That is, yi, adjusts so that 

pT - aG,/ayi7 = 0 

forj = l,..., r. Therefore [13], 

dFi(eJdei = aGi/aei . (1.3) 

It can further be shown that the convexity of Gi( y,, ,..., yiR , ei) implies 
the convexity of FJeJ. 

THEOREM 1.1. If Gi( yi, ,..., yjR , ei) is COnVf?x, Fi(ei) is a/So conuex. 

Proof. The proof is immediate from the definition of convexity. 
It is convenient to be able to use a single-valued function F,(eJ to 

associate with any emissions level its cost. The properties of Fi(ei) proved 
above allow us to conclude that any relevant conditions which are satisfied 

r Three general classes of techniques of emission reduction are available. First, 
emissions can be reduced by reducing the scale of output, or by altering the product 
mix of the firm. Second, the production process or the inputs used, such as fuels, can 
be altered. Finally, “tail-end” cleaning equipment can be installed to remove pollutants 
from effluent streams before they are released into the environment. All three of these 
techniques will commonly be found in combination. 
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by the partial derivative of Gi with respect to ei will be satisfied by the 
derivative of Fi . In particular, we can conclude that if the profit- 
maximizing firm has any choice of ei , it will minimize Fi(ei) subject to 
whatever costs or constraints we impose on it. Moreover, if Gi is convex, 
it follows that the conditions under which x:i Fi(ei) is minimized are the 
same as the conditions under which the total economic cost to firms of 
emissions control is minimized. 

2. THE CHARACTERIZATION OF AN EFFICIENT EMISSION VECTOR 

The goal of management is limited to bringing about an emission vector 
which will result in air of quality Q* at least total cost to the region. 
Such an emission vector is called efficient, and designated E**. The 
concept of least cost to the community is also given a specific meaning: 
it is the minimum of the sum xi Fi(e,). With some risk of ambiguity, this 
sum is called “joint total cost.” 

To provide a reference to which later results can be compared, a general 
solution for the efficient emission vector can now be derived. The problem 
is to choose the vector E = (e, ,..., e,) to minimize CiFi(ei) subject to 
the constraints 

E>,O and EH < Q*, 

where Q* > 0, hii > 0 for all i, j. We will label this the “total joint cost 
minimum problem.” Our exploration will proceed throughout this article 
on the assumption that Gi is convex. This implies that Fi(ei) is convex, 
and therefore that z:i Fi(ei) is also convex. It is also assumed that H is 
semipositive. The typical shape of FJe,) is illustrated in Fig. 1. 

Minimizing a convex function subject to linear constraints and non- 
negativity constraints is equivalent to finding the saddle point of an 
associated Lagrangean. Formally, (E**, U**) = (ef* ,..., e,**, uf* ,..., z&*) 
will be a saddle point of the expression 

with E* * > 0, U** > 0. The differential Kuhn-Tucker conditions for 
this saddle point are 
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These conditions are necessary and sufficient [7]. Moreover, it is easy to 
show that the minimum does in fact exist. 

THEOREM 2.1. E** and U** satisfying (2.1) and (2.2) exist. 

Proof. Since CiFi(cJ = 0 and CiFi(ei) 3 CiFi(Zi), for ei > 0, 
xj Fi(ei) is bounded from below. By hypothesis, the set 

is not empty. Therefore, xi I;,(e,) is defined on a nonempty closed set and 
bounded from below; therefore, it attains a minimum over the set Y for 
some element of Y. 

If x:i Fi(eJ is not strictly convex, then E** need not be unique. Since, 
however, minEEV xi Fi(eJ is unique, it does not matter what particular 
minimizer is chosen. Therefore, I shall refer to the vector which minimizes 
costs; the reader may interpret this reference as meaning “any element of 
the set of E which minimizes z:i Fi(eJ.” 

The following theorem is true if xi Fi(eJ is strictly convex. 

THEOREM 2.2. If E** minimizes xi Fi(eJ subject to EH < Q* and 
E>O,thenE** GE. 

Proof. Assume per contra that e?* > ?i for some i = i’. Then 
Fi$e:*) > Fi,(Ci*) and hi&,* > hijei, . Therefore 

and 
C hije’* + hi,jSi < 1 hije,“*. 

(2.3a) 

(2.3b) 
i#i’ 1 

By (2.3b) the vector (et* ,..., r;i, ,..., eX*) satisfies EH < Q* and by (2.3a) 
E** does not minimize x3i Fi(ei). 

3. MARKETS IN LICENSES 

We can now proceed to the construction of markets which, in equi- 
librium, lead to emission rates which satisfy the conditions of Theorem 2.1. 
A set of licenses are defined, such that the possession of licenses confers 
the right to carry out a certain average rate of emission. 

Consider the function 

A(Hi 9 &I, 
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where Hi is the i-th row of the matrix Hand Li = (Ii1 ,..., I&. We define 
Zik as the number of licenses of type k held by firm i. This function defines 
the right to emit which is generated by holding a portfolio of licenses Li . 
Then firm i can maximize profits by minimizing direct emission costs plus 
the cost of purchasing licenses, subject to the constraint that emissions 
not exceed A(Hi , Li). We assume throughout that some initial allocation 
of licenses I$, is made. Then the firm’s problem is to minimize 

FiCei) + C Pdlik - rh> 
k 

subject to ei < rl(H, , Li). 
A market equilibrium will exist if there exist nonnegative prices P* 

such that when ei*, Li solve the firm’s minimization problem for pk*, 
the following market clearing conditions hold: 

That is, there is some set of prices of licenses such that when each firm 
minimizes the sum of the cost of reducing emissions and the net cost of 
buying licenses, excess demand for licenses is nonpositive, and excess 
supply of a license drives its price to zero. 

The market equilibrium is efficient if ei* represents equilibrium 
emissions and in any equilibrium 

Note that when all licenses are allocated to firms, (3.la) implies that any 
expenditure on licenses by one firm is a revenue to another firm. Therefore 
total expenditure among all firms, associated with the control of pollution, 
just equals the total cost of emission control. That is, 

These three properties do not exhaust the set of desirable properties 
of a market system. It might be that an equilibrium exists, or is efficient, 
only under strong conditions on the initial allocations of licenses which 
can be adopted. The more variation which is possible in the choice of 
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initial allocations, the more freedom the management agency will have 
to pursue such goals as equity of the treatment, subsidization of 
“deserving” industries, and so on. We begin by defining a licensing 
system which has an efficient equilibrium for all distributions of a fixed 
total of licenses. 

Analogously to the distinction between ambient standards and emission 
standards, we must differentiate between emission licenses and pollution 
licenses. Emission licenses are perhaps the most natural to think of 
trading, but there are great problems in using them when quality at many 
locations is a matter of concern. In particular, it is not possible to allow 
the licenses to be traded on a one-for-one basis [ 121. 

Suppose there are two sources of pollution and one monitoring point, 
that each source is assigned licenses which allow it to emit 5 units of 
pollutant, and that h,, = 1 and h,, = 2. Under these circumstances, 
there will be 5 . 1 + 5 * 2 = 15 units of pollution at the monitoring point. 
The marginal rate of substitution between emissions at source 2 and 
emissions at source 1 which keeps air quality constant is 2. If licenses 
are exchanged on a one-for-one basis, the transfer of one license from 
firm 1 to firm 2 will result in air quality being degraded to I6 units of 
poliution. If there is a second monitoring point, and hzz/hrz # 2, the 
marginal rate of substitution between emissions at sources 1 and 2 will 
change, depending on which monitoring point imposes the operative 
constraint on emissions. By defining rights to cause pollution at each of 
the monitoring points, we can avoid these problems completely, although 
they can be resolved with emission licenses if certain restrictions on trades 
are observed. 

3.1. The Market in Licenses to Pollute 

In this section we establish the existence and efficiency of equilibrium 
in a system of transferable licenses to pollute. Let iii represent the quantity 
of licenses aIlowing pollution at point j held by firm i, and let 

be the “portfolio” of licenses held by firm i. The licensing function can 
have the form 

which implies that each firm faces the constraints 

hsjei < Iii j = I,..., m. 
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That is, the relevant element of the diffusion matrix is taken to be a correct 
predictor of the amount which an average rate of emission at point i 
contributes to pollutant concentration at point j. Each firm is allowed to 
have an average rate of emission which produces no more pollution at 
any point than the amount which the firm is licensed to cause at that point. 
The firm will minimize li,(eJ + Cjpj(&i - li”j) subject to the licensing 
constraint. 

In the theorems which follow we use the convention that lj is a scalar, 
a total number of licenses allowing pollution at point j. Thus xi iii = I, . 
When Li = (Ii, ,..., lim) and L = (II ,..,, I,), xi Li = L. 

The strategy of proof is to define a market equilibrium relative to an 
initial allocation of licenses and to derive necessary and sufficient con- 
ditions for its existence. A subsidiary construction, called a “license- 
constrained joint cost minimum,“is defined and shown to exist. It generates 
a second set of necessary and sufficient conditions. It is shown that the 
emission vector and shadow prices which satisfy the conditions of a 
license-constrained joint cost minimum for given totals of licenses also 
satisfy the conditions of competitive equilibrium relative to any initial 
allocation of licenses in which the given totals are completely distributed 
among firms. An equilibrium license portfolio for each firm is constructed, 
and shadow prices on each firm’s licensing constraints are identified. To 
prove that a competitive equilibrium achieves the joint cost minimum 
defined in Section 2, we show that when license totals equal desired air 
qualities any emission vector and price vector which satisfy the equi- 
librium conditions also satisfy the conditions for efficiency. In the course 
of the proof the efficient emission vector is identified as the equilibrium 
emission vector and shadow prices on the air quality constraints in the 
overall joint cost minimum are identified as the prices of licenses. The 
equilibrium license portfolio has each element just equal to the pollution 
caused by the efficient rate of emission for the corresponding firm. The 
proof itself is rigorous and abstract. 

DEFINITION. A market equilibrium is an n + 2 tuple of vectors 
Li* >, 0, E* > 0, and P* > 0 such that Li* and E* minimize 

subject to iii - hijei > 0, j = l,..., m, for all i and which also satisfy the 
market clearing conditions 
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LEMMA 3. I. A market equilibrium exists if and only if there exist vectors 

<ui*, ,*--, dJ 2 0 i = I,..., n, 

(PI*,*.*, Pm*) 3 0 
such that 

Fi’(ei*) + C uzhij > 0, ei” ki’(ei*) + C UGh,] = 0, (3.2a) 
j 

pi* - 24; 3 0, c c,: - ui”;:] = 0, (3.2b) 

l,?;: - hijei* > 0, C ::[I: - hiiei*] = 0, (3.2~) 

for all i and 

T (1: - c!d < 0, $ pj* [; (1: - C’J] = 0. (3.24 

Proof. First we characterize the vectors Li* and es* which minimize 
cost for the firm. Minimizing a function is equivalent to maximizing its 
negative; and the negative of a convex function is concave. Therefore, 
we can state the problem of the firm as one of maximizing the concave 
function 

--Fi(ei) - &j*(lij - $j). 

Form the Lagrangean 

From the Kuhn-Tucker theorem the following conditions are 
necessary and sufficient for the constrained maximum; where 
#Jj(lz ,..., ii*, , f?j*, 24: ,..., UX) = +i*. 

+*/aei < 0, 

a+i*/alij < 0, 

ej* * (a$i*/&?i) = 0, 

C 1: * (a&*/iYij) = 0, 

1 24: - (afji*/aUij) = 0. 

Performing the indicated differentiation gives 3.2a to 3.2~ which must 
be satisfied for all i. Equation (3.2d) repeats the market clearing condition. 
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DEFINITION. A license-constrained joint cost minimum is a vector E** 
which minimizes 

C Fi(ei) 

subject to EH < Lo and E >, 0. 
In making this definition we assume that some arbitrary vector of 

licenses Lo is issued by the management agency. We must assume that the 
set (E ) EH < Lo and E > 0} is not empty. Then the same argument used 
in Section 2 to establish the existence of a joint cost minimum will establish 
the existence of a license-constrained minimum. We now can use the 
following lemma to prove existence of an equilibrium on the pollution 
license market. 

LEMMA 3.2. An emission vector E** is a license-constrained joint cost 
minimum ifand only if there exists a vector (UT*,..., uz*) > 0 such that 

Fi’(eT*) + C uj**hij 3 0, 7 @* [E;‘(e?*) + T uT*hij] = 0, (3.3a) 
j 

IjO - C hije:* > 0, (3.3b) 
z 

C uj** [lj” - C hijeT*] = 0. 
j E 

Proof. The proof is as in Lemma 3.1. 
The market equilibrium will exist for any distribution of licenses such 

that 1: > 0 and z:i l:j = Ijo. 

THEOREM 3.1. A market equilibrium of the pollution license system 
exists for xi l,Oj = lj’. 

Proof. We proceed constructively by using (3.3a) and (3.3b) to show 
that ei* = e,F*, I: = hijeT*, pi* = uj** and u$ = up* for all i satisfy 
(3.2a)-(3.2d). 

Equation (3.2a). Since Fi’(e:*) + Cj uT*hij 2 0 for all i, and ef* > 0, 
it follows from 

that 

T e,* [Fi’(ef *) + 1 uT*h,j] = 0 
j 

e,* [Fi’(et*) + C uF*hl = 0 
j 

for all i. Therefore e?* and uf* satisfy 3.2a for all i. 9 D 
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Equation (3.2b). If pi* = uj** and UC = UT*, pi* - UC = 0 for all i 
and j, and (3.2b) is satisfied by any 1; . 

Equation (3.2~). If 1; = hijeF* for all i and j, clearly (2 and e:* satisfy 
(3.2~) for any uz , and in particular for UT*. 

Equation (3.2d). Let xi I; = Ijo and 1: = hije:*. Then, (3.3b) gives 
by substitution 

Therefore, pi* = uj** and 1: satisfy (3.2d). 
Thus we conclude that for any choice of license totals which imply 

a feasible air quality vector, a market equilibrium exists. If we choose the 
license totals correctly, we can show that any market equilibrium is a joint 
cost minimum. The joint cost minimum was defined in Section 2 as a 
vector E** which minimizes xi Fi(ei) subject to EH < Q* and E > 0. 
First we prove that any emission vector which results from a market 
equilibrium with Ci 18 = Zjo minimizes CC Fi(eJ subject to EH < Lo and 
E 3 0. 

THEOREM 3.2. Any emission vector which satisfies the conditions of a 
market equilibrium with Ci Lie = Lo is a license-constrained joint cost 
minimum. 

Proof. We show that any ei* which satisfies (3.2a)-(3.2d) satisfies 
(3.3a) and (3.3b) with uj** = pi*. 

Equation (3.3a). By (3.2b), either u$ = pi* or 15 = 0. By (3.2~) 
16 3 hijet*; therefore, whenever pj* # u: , l,$ = 0, and it follows 
that ei* = 0, or hij = 0. Whenever hii = 0, pj*hii = uzhii = 0. Therefore, 
e,*[Fi’(ei*) + Cj pj*hii] = 0 holds whether or not pi* = U$ . 

Since U: < pi*, & u$hij < Cjpj*hij and Ft’(ei*) + cj uzhij > 0 imply 
Fi’(ei*) + Cj pj*hij > 0. Therefore, ei* and pi* satisfy the inequality in 
(3.3a). 

Equation (3.3b). Since Ci 1: = lj”, (3.2d) implies that ljo = xi 1: > 
xi 12 . Since, by (3.2~), II?;: - hijei* > 0, Ci I$ - & hijei* > 0. If 
IjO > Ci 1; , then it must be true that Ido - xi hiiei* > 0 and the 
inequality in (3.3b) is satisfied by e,*. 

Substitute Zj” for 23 g in (3.2d) giving Cjp~*[l~ - xi 1:] = 0. If 
12 = hijei* for all i and allj, clearly xjpj*[liO - xi hijei*] = 0. Assume 
that 1: - hijei* > 0 for some i andj. Then, by (3.2~), U$ = 0. Ifpj* # 0, 
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(3.2b) implies that f$ = 0 for that i andj, and since I$ > hijei* for that i 
and j, ei* must be negative. Since this is impossible, we must have either 
I;*j = hijei* for all i or pj* = 0; and the alternative holds for each i. 
Therefore, 

pj* [x h,je,* - Zj”] = 0, 
L 

and pi*, e,* satisfy (3.3b). 
Thus, if we take the totals of each type of license distributed to firms 

we will find that firms exchange licenses so as to minimize joint total 
cost subject to the constraint that concentrations of pollutants at each 
monitoring point be no greater than the total of licenses issued for that 
point. The following corollary is immediate. 

COROLLARY. If Lo = Q*, the equilibrium emission vector is a joint 
cost minimum. 

Proof. If Lo = Q*, by Theorem 3.2 an equilibrium emission vector 
minimizes Ct Fi(ei) subject to EH < Q* and E 2 0. 

Theorem 3.1 can now be restated as “an efficient emission vector can be 
achieved as a competitive equilibrium” and 3.2 as “any competitive 
equilibrium with appropriate license distribution achieves an efficient 
vector.” We can also prove an interesting theorem on the initial allocation 
of licenses. 

THEOREM 3.3. If I$ >, 0 and xi 1: = qj*, then E*, P*, and Li* are 
independent of L,O. 

Proof. Equations (3.2a)-(3.2c) depend in no way on Lie. In (3.2d) 
Lie appears, but only in the form of the sum xi Lie. 

This result is somewhat unusual, in that the particular equilibrium 
achieved in a system usually depends on the initial allocations. The 
reason that this system is independent of the initial allocation is that the 
firm’s behavior is independent of its asset position. Any redistribution 
which preserves totals of each type of license does not change the equi- 
librium. A graphical depiction of the equilibrium of the firm when a 
system of pollution licenses is, imposed reveals the independence of initial 
allocations. The equilibrium is depicted in Fig. 1. 

In the course of proving Theorem 3.1 it was noted that 
pj*(hijei* - 1;) = 0, SO that C,pj*(hije< * - 15) = 0. Any emission level 
chosen by the firm implies that the firm purchases certain quantities of 
licenses, so that we can associate with any emission rate a cost equal to 
xjpi*hiiei*. The minimization of cost (of emission control plus net 
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purchases of licenses) can then be represented as the minimization of the 
sum F,(eJ + Cj hijpj*e, . The emission rate ei* in Fig. 1 is the minimizer 
of this sum. Theorem 3.1 states that there exist prices which clear markets 
for licenses when each firm chooses license holdings, and emission rates ei*, 
to minimize cost. 

COST 

0 e: ci EMISSIONS 

i 

------___ E 

FIG. 1. A-Fi(ei) + XI pjhdjei ; B-Cj pjhifei ; C-fi(ei) f xj Phei - Cr PJ,P, ; 
D-Fi(ei); E---G p& . 

The initial allocation of licenses is equivalent to a lump sum subsidy, 
and is independent of emission level. Therefore, this subsidy can be 
represented as a horizontal line, cjpj*l& , in Fig. 1. The curve 
Fi(ei) + xfpj*hijei - Cjpi*fE is the net cost function which represents 
the actual cost of emission control and licenses. Note that ei* is inde- 
pendent of the size of the subsidy. Because of this result, the management 
agency can distribute licenses as it pleases. Considerations of equity, of 
administrative convenience, or of political expediency can determine the 
allocation. The same efficient equilibrium will be achieved. 

It should, however, be noted that in assuming the convexity of Fi(ei) 
we impose certain conditions relating to nonnegative profits. Let 7Ti be the 
(maximal) profit earned before the introduction of a licensing system, 
and let Si(et) be the profit earned when emissions are set at rate ei . Then 
by (1.1) we have Gi(ei) = fi6 - Fi(ei). In the long run the firm will only 
stay in business if ;;i(ei) > 0. In this case the cost function will have the 
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form Fi(ei) = min(ii, - iii(eJ, ii*). An upper bound, equal to 75$ , is 
placed on costs incurred by the firm. This upper bound destroys the 
convexity of the cost function unless t;;(O) < fii . Such an assumption is 
implicit in the assumption that F,(eJ is convex. 

It would appear that the need to purchase licenses imposes a cost on 
the firm additional to the cost of emission control J’Jei). Even though this 
cost sums to zero for all firms taken together, it may be positive for some 
individual firms and negative for others. Fortunately, we can prove the 
following theorem, namely, that if Fi(0) < fii , then even if a firm is 
allocated no licences initially (i.e., lf$ = 0 for some i and alli), it can still 
earn nonnegative profits at any levels of emissions and license holding. 

THEOREM 3.4. IfF,(O) < ifi,Fi(ei*) + Cjpj*Iz d +i . 

Proof. We have proved that 

Fg(ei*) + C pj*lz = Fi(ei*) + C pj*hiie.i*. 
3 3 

If Fi(ei*) + &pi*hfjei* > iii , then Fi(ei*) + Cjpi*hiiei* > Fi(0). But 
ei = 0 and lij = 0 satisfy ei < n(Hi , ti), so that ei* does not minimize 
cost subject to the licensing constraint. This contradiction establishes 
the theorem. 

This demonstration completes the discussion of pollution licenses. We 
began by showing that for any vector of licenses Lo which implies feasible 
concentration levtls at each monitoring point there exists a competitive 
equilibrium in the license market. We then showed that the concentrations 
which result from the equilibrium will be less than or equal to the levels 
permitted by the vector of licenses and that joint total costs are minimized 
subject to this constraint. Finally we showed that when Lo = Q*, the 
problem of achieving desired air quality standards at minimum cost is 
solved by the market in pollution licenses. 

The major generalization provided by this theorem is that it establishes 
the possibility of achieving environmental goals at a number of geographic 
points while maintaining the advantages of a market system. Thus one 
important objection to the use of economic incentives, that they could lead 
to change in the pattern of emissions such that although air quality 
improvements at one point are achieved, it is at the expense of deteriorating 
air quality elsewhere, is laid to rest. Moreover, we discovered that the 
fixed totals could be allocated arbitrarily among firms. 

Overall convexity and the possibility, for each firm, of absorbing all 
costs of abatement in profits were assumptions necessary for the operation 
of the system when no information on cost functions is available. 
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We turn now to an alternative licensing system. It will turn out that 
this system of emission licenses is interesting because it provides a means 
of linking up the proposal to issue transferable licenses with other 
proposals for achieving efficient solutions in a decentralized manner. 

3.2. The Market in Emission Licenses 

The effluent charge is a tax which a firm must pay on each unit of 
pollutant which it emits into a water course. A corresponding charge for 
air pollution control might be called an emission charge. In order to 
calculate a charge which will lead to efficiency in air pollution control, 
the manager must solve in advance the overall cost-minimization problem. 
It is not difficult to show that the correct tax on emission by firm i is equal 
to the shadow price on its emissions determined by the minimization of 
joint total cost. The tax is Cj ui*hij , where uj* is the value of the Lagrange 
multiplier on the j-th quality constraint evaluated at the optimum. But 
in order to calculate such a tax the manager must know the cost functions 
of each firm. It is, of course, possible to obtain that information in an 
iterative process by varying the tax. This is a cumbersome and politically 
unattractive procedure, and it has been shown by Marglin [IO] that the 
information transferred to the regulatory authority by such a procedure 
is as great as the information needed to set quantity standards for each 
firm. That is, whenever it is possible to calculate the correct tax it is 
possible to achieve E** in the initial allocation. 

A licensing scheme does not require such prior or iterative gathering of 
information. The market makes the necessary calculations independently 
in the course of reaching equilibrium. For this reason we are led to consider 
licensing schemes as superior to taxation. The natural correlate of emission 
charges is a system of emission licenses. 

An emission license confers on the firm holding it the right to emit 
pollutants at a certain rate. It is not always desirable to allow such rights 
to be transferred on a one-for-one basis: the desirable rule governing 
exchange of emission rights is that a firm may be allowed to emit up to a 
level which causes pollution equal to that which would be caused if each 
firm from which it obtained rights emitted to the maximum extent 
permitted by the rights which it has given up. We must differentiate rights 
to emit by the location at which they permit emissions to take place. Then 
Ik , k = I,..., n, is a quantity of licenses to emit at location k. It is sufficient 
to allow k to run over the set of firms I since each firm is in a fixed location. 
Let Zilc represent the quantity of licenses allowing emissions at location k 
held by firm i. 

If the exchange of such licenses between polluters at different locations 
is to be permitted, some rule must be stated regarding the right to emit 
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which a license to emit at location k confers on a firm at location i. 
Consider a firm i which emits at a rate e, = h,&/hij . Then the pollution 
which firm i causes at point j is precisely the pollution which firm k would 
cause if it emitted at the rate e, = Zik , since hijei = hkflik = hkjek . The 
licensing function can have the form 

which implies that each firm faces the constraints 

haei < C h/Jik: j = l,..., m, 

and will minimize 

subject to those constraints. 
A restriction on the initial allocation of licenses is needed if the market 

equilibrium with emission licenses is to be efficient. It is that Ci I& 3 0 
and Ck hkj Ci I& = qj* for all j. Note that this assumption is equivalent 
to the assumption that there exists a nonnegative emission vector E” such 
that 

E” - H = Q*. 

This is quite a strong condition, since even if the matrix His of full rank, 
for arbitrary semipositive H and Q* the equations 

E-H= Q* 

will not in general have nonnegative solutions. 
If Ck hkjlk’ < qi* for some j it may not be possible to achieve the 

minimum of joint total cost without prior knowledge of cost functions. 
Suppose that the joint cost minimum vector E** satisfies 

C hijeT* = qj* 

for some j, and that & hkilkO < qi* for the same j. Then since the 
equilibrium emission vector E* satisfies 
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it follows that 

and e.* # e:*, so that the market equilibrium is inefficient. z 

DEFINITION. A market equilibrium in emission licenses is an n + 2- 
tuple of vectors Li* 3 0, E* 2 0 and P* 3 0 such that Li* and E* 
minimizes 

F&d + 1 pk*(hk - Ck> 
k 

subject to 

C hkjlik - hijei > 0 j = I,..., m 
k 

and 

f?i > 0; lik > 0 

for all i and which also satisfy the market clearing conditions 

LEMMA 3.3. A market equilibrium exists if there exist vectors 

<d >-.*> 47J 3 0 i = l,..., n, 

(PI*,..., Pn*) 3 0, 
(3.4) 

such that 

Fi’(ej*) + 1 uzhij 3 0, 
i 

Pk* - 7 u$kj 2 0, 

ei* [F,‘(e,*) + 1 uch,l = 0, (3.5a) 

T  [I:, (Pk* - x’u$hkj)] = 0, (3.5b) 
j  

C hkjI$ - hijei* 3 0, C [u: (T hkjI2 - hijei*)] = 0, (3.5~) 
k i 

for all i and 

; Pk* [- (&t - Ip,,] = 0. (3.W 

Proof. The proof is as in Lemma 3. I. 
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THEOREM 3.5. A market equilibrium in emission licenses exists. 

Proof. In Theorem 2.2 it was shown that an emission vector minimizing 
joint total costs subject to the air quality constraints exists, and that in 
consequence E** and V** satisfying (2.1) and (2.2) exist. Let licenses be 
issued initially so that 

k z 

for all j. Then we show that E ** is an emission vector and V** a price 
vector satisfying (3.5a)-(3.5d). 

We begin by proving the following proposition: 

P.l. If CI, h,Jko 2 xi hije:*, then there exist I& such that xi I$ < lrco, 
I& >, 0, and & hk& > h,jef* for all i and k. Letting Li = (Ii, ,..., It,) 
and Hi be the i-th row of the matrix H we may write the inequalities which 
must have a nonnegative solution in matrix form as 

(L,* ,..., L,*) rH * . . -Hij < (-H,e:* ,..., -H,ez*, Lo). 

It is a theorem [3] that either these inequalities or the following inequalities 
have a nonnegative solution: 

< 0. 

We can write (1) as 

- ?$ hijxlj + x,+li 2 0 G = l,..., n), 

- $ hijx,$ + x,+~~ 3 0 (i = I,..., n) 

(1) 

(2) 
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and (2) as 

We assume that there do exist nonnegative solutions denoted with 
superscript O’s to (1) and (2). Let us multiply each line of (1) through by Zio 
and sum the result over i, giving 

for all k. 
Comparing this inequality with (2) we find 

- i g hijei*xij < - f f hdil:Xkj a 
i=l j=l i-1 j=1 

Since xi hijei* < xi hiili” by hypothesis, 

and 

- i 2 hiiei*$j < - i 2 hijef*x$ 
i=l j-1 j=j j-1 

for all k. We remove the minus signs and reverse the inequality, giving 

for all k. Therefore it must be true for some i that 

2 h<jxfj > C hi&j 
j i 

for all k. Therefore, it must be true for k = i, which implies 

This contradiction establishes that there is no nonnegative solution to 
inequalities (1) and (2) and P. 1 is proved. 
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We can now proceed line by line to show that E** and II** satisfying 
(2.1) and (2.2) also satisfy (3.5a)-(3.5d). 

Equation (3.5a). From (2.1), ef* and z$* satisfy (3.5a) for all i. 

Equation (3.5b). Let plc* = Cj z.$*& and U; = z$* for all i. Then 
they satisfy (3.5b) since plc* - Cj u@,~ = 0 for all i and k. 

Equation (3.5~). Let & hkj xi l,ok = qj*. Then by (2.2), 

and by P.l there exist I& 3 0 such that 

for all i. If > holds for some i and j, 

and UT* = 0. Therefore, (3.5~) is satisfied with U$ = UT*. 

Equation (3.5d). If & lFk > x:i Ii*, for some k and hkj > 0, 

and u?* = 0 for all j. If hki = 0 for that k and some j, then for the 
corresponding j, u:*hkj = 0. In either case pk* = Cj uT*hkj = 0 and 
(3.5d) is satisfied. 

We reverse the direction of inference to prove that if xi hijli’ = qj*, 
the competitive equilibrium emission vector is efficient. We assume in 
addition that the rank of H is m: this involves no significant loss of 
generality since any constraint matrix can be made to satisfy the condition 
by striking out redundant constraints. The operation of eliminating 
redundant constraints does not change the set Y of emission vectors 
which satisfy the constraints. 

THEOREM 3.6. If XI, hkjlk’ = qj*, E* minimizes xi Fi(eJ subject to 
EH < Q*, E > 0. 

Proof. First we note that in proving Theorem 3.4 we established that 
(3.5a)-(3.5d) are satisfied, for all i, by UQ = uj**, and that the rank of H 
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equals m. Therefore, the matrix of partial derivatives of the licensing 
constraints for each firm also has rank m, and the multipliers on those 
constraints are unique [4]. Since the Kuhn-Tucker conditions are satisfied 
by identical multipliers for each firm, they are only satisfied by identical 
multipliers. Let uj ** be equal to any of the U$ , identical for all i. Then, 

Equation (2.1). ei* and UT* as defined satisfy (2.1) whenever they 
satisfy (3Sa). 

Equation (2.2). By (3.5d) 

By (3.5~) 

k i 2 

Therefore 4;* - xi hijed* > 0. If qj* > xi huei*, either xi l& > 2.a I& 
for some k with hkj # 0, or Ck h& > hiiei* for some i and that j. If the 
latter, U$ = 0 and u:* = 0. If the former, pk* = 0 and since by (3.5b) 
pk* - Cj Ui*jhkj > 0, Cj ughtj = 0 and u$ = 0, SO that uj** = 0. Therefore, 

Uf*(qj* - xi hgei*) = 0 when ~j”* = UC . 

This completes the proof that a competitive equilibrium, satisfying the 
conditions of joint cost minimization, exists in the market for emission 
licenses. An integral part of the proof was the assumption that the total 
of each type of license is determined by solving the equations 

c h,jl,’ = qj*. 
k 

If the management agency is restricted to assigning all licenses of type i 
which it issues to firm i, then its ability to redistribute costs will be severely 
limited by the necessity of choosing Zi” to satisfy the air quality constraints 
with equality if indeed such a solution exists in the problem at hand. 
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