Proof of Weitzman Theorem

Let MB = a-bq -- (1)
MC =
$$\alpha + \beta q + u$$
 where u~ (0, σ^2) -- (2)

Regulator maximises W = E[Net social benefit] = $E \int_{0}^{q} [MB(q) - MC(q,u)] dq$ --(3)

Procedure: (i) Obtain optimal values of q* and p* substtg these successively into (3) get EWG_{quota}, EWG_{tax} (EWG = expected welfare gain)

(ii) Compare the two, $EWG_{tax} EWG_{quota}$ to measure the expected net benefit of one policy over another.

Optimal quota: Choose q* to max E (NSB) \Rightarrow FOC - $\frac{\partial E(NSB)}{\partial q^*} = 0$

$$\Rightarrow E [MB - MC] = 0 \Rightarrow E[a - bq * -(\alpha + \beta q * + u)] = 0 \Rightarrow a - bq * = \alpha + \beta q *$$

or $q^* = \frac{a - \alpha}{b + \beta}$
So, $EWG_{quota} = E \int_{o}^{q^* = \frac{a - \alpha}{b + \beta}} [a - bq - \alpha - \beta q - u] dq$
$$= E \left[(a - \alpha)q - \frac{(b + \beta)^{q^2}}{2} \right]_{o}^{q^*} = \frac{1}{2} \left[\frac{(a - \alpha)2}{b + \beta} \right] \qquad --(4)$$

<u>Optimal tax</u> (P*) : derive the firm's reaction function, i.e., the q that is produced by any P- MC (q,u) = P - firms treat u as certain since they <u>know</u> their MC -- invert MC - q = h (P,u) q = h (P,u) gives the qty abated (a random variable) as a function of P -- this is the firm's reaction function, i.e., the q produced by any P.

To pick optimal tax, set P to maximise NSB

FOC
$$\frac{\partial E}{\partial P}(NSB) = \frac{\partial E}{\partial q}(NSB)\frac{\partial q}{\partial P} = \frac{\partial E}{\partial h}(NSB)\frac{\partial h}{\partial P} = 0$$

= $E\left[MB\frac{(h(p,u))}{q} - MC(h(p,u),u)\right]\frac{\partial h}{\partial P} = 0$

Note, MB (q) = MB (h (p,u)) - MB is a function of u because the level of abatement is uncertain under a tax (<u>unlike the case w/ quotas</u>) e.g., set tax = p - you think you'll get to E on MB but actually you get to F

Abatement

Now, since MC (q,u) = $\alpha + \beta q + u = P$ Solve for q, $q = \frac{1}{\beta} (P - \alpha - u) = h(P, u)$ Substitute for q in (5): E $\left[a - \frac{b}{\beta} (P^* - \alpha - u) - \alpha - \frac{\beta}{\beta} (P^* - \alpha - u) - u \right] \frac{1}{\beta} = 0$

Or,
$$(p^* - \alpha) \frac{(\beta + b)}{\beta} = a - \alpha$$
 $\frac{\partial h}{\partial p} = \frac{1}{\beta}$

Optimal tax (P*): $\Rightarrow \frac{1}{\beta} (P*-\alpha) = \frac{a-\alpha}{\beta+b}$

recall E(u) = 0 --(6)

So, EWG_{tax} = E
$$\int_{0}^{q=h(P^*,u)} [MB(q) - MC(q,u)] dq$$

Aside : h (P*,u) =
$$\frac{1}{\beta} (p * -\alpha - u) = \frac{1}{\beta} (p * -\alpha) - \frac{u}{\beta}$$

from (6) h (P*,u) =
$$\frac{a-\alpha}{\beta+b} - \frac{u}{\beta}$$

So, EWG_{tax} = E $\int_{0}^{a-\alpha-\frac{\mu}{\beta}} [MB(q) - MC(q,u)] dq$
= E $\int_{0}^{\frac{a-\alpha}{\beta+b}-\frac{u}{\beta}} (a-bq-\alpha-\beta q-u) dq$
= E $\left[(a-\alpha)q - uq - \frac{(b+\beta)q^2}{2} \right]_{0}^{\frac{a-\alpha}{\beta+b}-\frac{u}{\beta}}$

Skipping a few steps---

Recall $E(u^2)$

$$= \frac{(a-\alpha)^2}{b+\beta} + \frac{\sigma^2}{\beta} - \frac{1}{2} \cdot \frac{(a-\alpha)^2}{(b+\beta)^2} - \frac{\sigma^2}{2\beta^2} \cdot (b+\beta)$$
$$= \frac{1}{2} \cdot \left[\frac{(a-\alpha)^2}{b+\beta}\right] + \frac{\sigma^2}{2\beta^2} (2\beta - b - \beta)$$

same as (4) EWGquota

So, EWGtax - EWGquota = $\frac{\sigma^2}{2\beta^2}(\beta - b)$ This is the key result. If $\beta > b$ then

tax better & vice-verse. If $\beta = b \text{ EWG}_{\text{tax}} = \text{EWG}_{\text{quota}}$

Note that $E(u^2) = \sigma^2$ affects the magnitude of the difference between EWG under the two policies (i.e., it reflects the distance b/w MAC_e & MAC_t), but it does not affect the choice of the policy instrument.