Competitive Equilibrium and its Existence^{*}

Ram Singh[†]

This Write-up is not for circulation

1 Basics

1.1 Individual UMP

Let us start with the utility maximization problem of the individuals in the economy. We assume that individual consumers are price-takers. Let the set of price vectors be $\mathbf{p} = (p_1, ..., p_M) \in \mathbb{R}_{++}^M$. That is, $(p_1, ..., p_M) > (0, ..., 0)$. Now, the consumer *i* will choose the her optimum bundle by solving:

$$\max_{\mathbf{x} \in \mathbb{R}^J_+} u^i(\mathbf{x}) \quad s.t. \quad \mathbf{p}.\mathbf{x} \le \mathbf{p}.\mathbf{e}^i$$

Assumption 1 For all $i \in I$, u^i is continuous, strongly increasing, and strictly quasiconcave on \mathbb{R}^M_+ .

The utility function, u^i , is said to be strongly increasing if for any two bundles \mathbf{x} and \mathbf{x}'

$$\mathbf{x}' \ge \mathbf{x} \Rightarrow u^i(\mathbf{x}') > u^i(\mathbf{x}).$$

In view of monotonicity of the preferences, for given $\mathbf{p} = (p_1, ..., p_M) >> (0, ..., 0)$, consumer *i* solves:

$$\max_{\mathbf{x}\in\mathbb{R}^M_+} u^i(\mathbf{x}) \quad s.t. \quad \mathbf{p}.\mathbf{x} = \mathbf{p}.\mathbf{e}^i \tag{1}$$

From the first part of the course, you know that when $u^{i}(.)$ satisfies assumptions listed above, the following result holds.

Theorem 1 Under the above assumptions on $u^i(.)$, for every $(p_1, ..., p_M) > (0, ..., 0)$, (1) has a unique solution, say $\mathbf{x}^i(\mathbf{p}, \mathbf{p}.\mathbf{e}^i)$.

^{*}References are: Arrow and Debreu (1954), and McKenzie (2008); Arrow and Hahn (1971). Jehle and Reny (2008).

[†]Delhi School of Economics, University of Delhi. Email:

Note: For each i = 1, ..., N,

$$\mathbf{x}^{i}(\mathbf{p},\mathbf{p},\mathbf{e}^{i}):\mathbb{R}_{++}^{M}\mapsto\mathbb{R}_{+}^{M};$$

 $\mathbf{x}^{i}(\mathbf{p}, \mathbf{p}, \mathbf{e}^{i}) = (x_{1}^{i}(\mathbf{p}, \mathbf{p}, \mathbf{e}^{i}, x_{M}^{i}(\mathbf{p}, \mathbf{p}, \mathbf{e}^{i}).$

Theorem 2 Under the above assumptions on $u^i(.)$, for every $(p_1, ..., p_M) > (0, ..., 0)$,

- $\mathbf{x}^{i}(\mathbf{p}, \mathbf{p}, \mathbf{e}^{i})$ is continuous in \mathbf{p} over \mathbb{R}^{M}_{+} .
- For all i = 1, 2, ..., N, we have: $\mathbf{x}^{i}(t\mathbf{p}) = \mathbf{x}^{i}(\mathbf{p})$, for all t > 0. That is, demand of each good j by individual i satisfies the following property:

$$x_j^i(t\mathbf{p}) = x_j^i(\mathbf{p}) \text{ for all } t > 0.$$

Question 1 Given that $u^i(.)$ is strongly increasing,

- is $\mathbf{x}^{i}(\mathbf{p})$ continuous over \mathbb{R}^{M}_{+} ?
- is the demand function $x_j^i(\mathbf{p})$ defined at $p_j = 0$?

1.2 Excess Demand Function

Definition 1 The excess demand for *j*th good by the *i*th individual is give by:

$$\mathbf{z}_j^i(\mathbf{p}) = x_j^i(\mathbf{p}, \mathbf{p}, \mathbf{e}^i) - e_j^i.$$

The aggregate excess demand for jth good is give by:

$$\mathbf{z}_j(\mathbf{p}) = \sum_{i=1}^N x_j^i(\mathbf{p}, \mathbf{p}, \mathbf{e}^i) - \sum_{i=1}^N e_j^i.$$

So, Aggregate Excess Demand Function is:

$$\mathbf{z}(\mathbf{p}) = (\mathbf{z}_1(\mathbf{p}), ..., \mathbf{z}_M(\mathbf{p})),$$

Theorem 3 Under the above assumptions on $u^{i}(.)$, for any $\mathbf{p} >> \mathbf{0}$,

- **z**(.) is continuous in **p**
- $\mathbf{z}(t\mathbf{p}) = \mathbf{z}(\mathbf{p}), \text{ for all } t > 0$
- $\mathbf{p}.\mathbf{z}(\mathbf{p}) = 0.$ (the Walras' Law)

For any given price vector \mathbf{p} , we have

$$\mathbf{p}.\mathbf{x}^{i}(\mathbf{p},\mathbf{p}.\mathbf{e}^{i}) - \mathbf{p}.\mathbf{e}^{i} = 0, i.e.,$$
$$\sum_{j=1}^{M} p_{j}[x_{j}^{i}(\mathbf{p},\mathbf{p}.\mathbf{e}^{i}) - e_{j}^{i}] = 0.$$

This gives:

$$\begin{split} \sum_{i=1}^{N} \sum_{j=1}^{M} p_j [x_j^i(\mathbf{p}, \mathbf{p}, \mathbf{e}^i) - e_j^i] &= 0, i.e., \\ \sum_{j=1}^{M} \sum_{i=1}^{N} p_j [x_j^i(\mathbf{p}, \mathbf{p}, \mathbf{e}^i) - e_j^i] &= 0, i.e., \\ \sum_{j=1}^{M} p_j \left[\sum_{i=1}^{N} x_j^i(\mathbf{p}, \mathbf{p}, \mathbf{e}^i) - \sum_{i=1}^{N} e_j^i \right] &= 0 \end{split}$$

That is,

$$\sum_{j=1}^{M} p_j z_j(\mathbf{p}) = 0, i.e.,$$
$$\mathbf{p}.\mathbf{z}(\mathbf{p}) = 0$$

So,

$$p_1 z_1(\mathbf{p}) + p_2 z_2(\mathbf{p}) + \dots + p_{j-1} z_{j-1}(\mathbf{p}) + p_{j+1} z_{j+1}(\mathbf{p}) + p_M z_M(\mathbf{p}) = -p_j z_j(\mathbf{p})$$

For a price vector $\mathbf{p} >> \mathbf{0}$,

- if $z_{j'}(\mathbf{p}) = 0$ for all $j' \neq j$, then $z_j(\mathbf{p}) = 0$
- For two goods case,

$$p_1 z_1(\mathbf{p}) = -p_2 z_2(\mathbf{p}).$$

So,

$$z_1(\mathbf{p}) > 0 \Rightarrow z_2(\mathbf{p}) < 0; \text{ and } z_1(\mathbf{p}) = 0 \Rightarrow z_2(\mathbf{p}) = 0$$

1.3 Walrasian Equilibrium

Definition 2 Walrasian Equilibrium Price: A price vector \mathbf{p}^* is equilibrium price vector, if for all j = 1, ..., J,

$$\mathbf{z}_{j}(\mathbf{p}^{*}) = \sum_{i=1}^{N} x_{j}^{i}(\mathbf{p}^{*}, \mathbf{p}^{*}.\mathbf{e}^{i}) - \sum_{i=1}^{N} e_{j}^{i} = 0, \quad i.e., \text{ if}$$
$$\mathbf{z}(\mathbf{p}^{*}) = \mathbf{0} = (0, ..., 0).$$

Two goods: food and cloth

Let (p_f, p_c) be the price vector. We can work with $\mathbf{p} = (\frac{p_f}{p_c}, 1) = (p, 1)$. Since, we know that for all t > 0:

$$\mathbf{z}(t\mathbf{p}) = \mathbf{z}(\mathbf{p})$$

Therefore, we have

$$pz_f(\mathbf{p}) + z_c(\mathbf{p}) = 0.$$

Assumptions:

- $z_i(\mathbf{p})$ is continuous for all $\mathbf{p} >> \mathbf{0}$, i.e., for all p > 0.
- there exists small $p = \epsilon > 0$ s.t. $z_f(\epsilon, 1) >> 0$ and another $p' > \frac{1}{\epsilon}$ s.t. $z_f(p', 1) << 0$.

2 Existence of Walrasian Equilibrium: General Case

As demonstrated above, the individual demand functions are homogenous functions of degree zero. That is, for all i = 1, 2, ..., N, $\mathbf{x}^{i}(t\mathbf{p}) = \mathbf{x}^{i}(\mathbf{p})$, for all t > 0. Moreover, the excess demand function is also homogenous function of degree zero. So, it has the following property: $\mathbf{z}(t\mathbf{p}) = \mathbf{z}(\mathbf{p})$, for all t > 0.

Without any loss of generality, we can restrict attention to the following set of prices:

$$\mathbb{P}_{\epsilon} = \left\{ \mathbf{p} = (p_1, \dots, p_M) | \sum_{j=1}^M p_j = 1 \text{ and } p_j \ge \frac{\epsilon}{1+2M} \right\},\$$

where $\epsilon > 0$.

Note that the set \mathbb{P}_{ϵ} contains its boundaries. So, it is closed. Moreover, it is easily seen that the \mathbb{P}_{ϵ} is non-empty, bounded, and convex set for all $\epsilon \in (0, 1)$.

Theorem 4 Suppose $u^i(.)$ satisfies the above assumptions, and $\mathbf{e} >> \mathbf{0}$. Let $\{\mathbf{p}^s\}$ be a sequence of price vectors in \mathbb{R}^M_{++} , such that

- $\{\mathbf{p}^s\}$ converges to $\bar{\mathbf{p}}$, where
- $\bar{\mathbf{p}} \in \mathbb{R}^M_+, \ \bar{\mathbf{p}} \neq \mathbf{0}$, but for some $j, \ \bar{p}_j = 0$.

Then, for some good k with $\bar{p}_k = 0$, the sequence of excess demand (associated with $\{\mathbf{p}^s\}$), say $\{z_k(\mathbf{p}^s)\}$, is unbounded above.

Theorem 5 Under the above assumptions on u^i , there exists a price vector $\mathbf{p}^* >> \mathbf{0}$, such that $\mathbf{z}(\mathbf{p}^*) = \mathbf{0}$.

2.1 WE: Proof

We are familiar with the properties of the excess demand function $z_j(\mathbf{p})$ for every good, j = 1, ..., M. In the proof we will use this function to derive some other functions that will be useful in proving the result. First of all, let us define a function,

$$\bar{z}_j(\mathbf{p}) = \min\{z_j(\mathbf{p}), 1\}.$$
(2)

Note by its specification, $\bar{z}_j(\mathbf{p}) = \min\{z_j(\mathbf{p}), 1\} \leq 1$. Therefore, we have

$$0 \le \max\{\bar{z}_j(\mathbf{p}), 0\} \le 1.$$

Next, we want to define a function $f(\mathbf{p}) = (f_1(\mathbf{p}), ..., f_M(\mathbf{p})) : \mathbb{P}_{\epsilon} \mapsto \mathbb{P}_{\epsilon}$. Note that $f(\mathbf{p}) : \mathbb{P}_{\epsilon} \mapsto \mathbb{P}_{\epsilon}$ if and only two conditions are met. First, $f_1(\mathbf{p}) \ge \ge \frac{\epsilon}{1+2M}$ should hold for every j = 1, ..., M. Second, $\sum_{j=1}^{M} f_j(\mathbf{p}) = 1$.

Suppose, we specify a function such that: For j = 1, ..., M,

$$f_j(\mathbf{p}) = \frac{\epsilon + p_j + \max\{\bar{z}_j(\mathbf{p}), 0\}}{\epsilon M + 1 + \sum_{j=1}^M \max\{\bar{z}_j(\mathbf{p}), 0\}} = \frac{N_j(\mathbf{p})}{D(\mathbf{p})},$$

For this specification, we have $\sum_{j=1}^{M} f_j(\mathbf{p}) = 1$. Moreover, using the facts that $\max\{\bar{z}_j(\mathbf{p}), 0\} \leq 1, \epsilon < 1$ and $p_j > 0$, you can check that the following inequalities hold:

$$f_j(\mathbf{p}) \ge \frac{N_j(\mathbf{p})}{\epsilon M + 1 + M.1} \ge \frac{\epsilon}{\epsilon M + 1 + M.1} \ge \frac{\epsilon}{1 + 2M}.$$

Therefore, both of the above conditions are satisfied. So,

$$f(\mathbf{p}) = (f_1(\mathbf{p}), ..., f_M(\mathbf{p})) : \mathbb{P}_{\epsilon} \mapsto \mathbb{P}_{\epsilon}.$$

Also, since $D(\mathbf{p}) \geq 1 > 0$, the function $f(\mathbf{p})$ is a well defined and continuous function defined over a compact and convex domain. Therefore, by the Brouwer's fixed-point theorem, a 'Fixed Point' exists. That is, there exists \mathbf{p}^{ϵ} such that

$$f(\mathbf{p}^{\epsilon}) = \mathbf{p}^{\epsilon}, i.e.,$$

For all j = 1, ..., M, we have: $f_j(\mathbf{p}^{\epsilon}) = p_j^{\epsilon}$. Using the full form of $f_j(.)$, this implies that for all j = 1, ..., M,

$$\frac{\epsilon + p_j + \max\{\bar{z}_j(\mathbf{p}), 0\}}{\epsilon M + 1 + \sum_{j=1}^M \max\{\bar{z}_j(\mathbf{p}), 0\}} = p_j^{\epsilon}, i.e.,$$
$$p_j^{\epsilon}[M\epsilon + \sum_{j=1}^M \max\{\bar{z}_j(\mathbf{p}^{\epsilon}), 0\}] = \epsilon + \max\{\bar{z}_j(\mathbf{p}^{\epsilon}), 0\}.$$
(3)

Next, we let $\epsilon \to 0$. Consider the sequence of price vectors $\{\mathbf{p}^{\epsilon}\}$, as $\epsilon \to 0$.

- Sequence $\{\mathbf{p}^{\epsilon}\}$, as $\epsilon \to 0$, has a convergent subsequence, say $\{\mathbf{p}^{\epsilon'}\}$. Why?
- Let $\{\mathbf{p}^{\epsilon'}\}$ converge to \mathbf{p}^* , as $\epsilon \to 0$.
- Clearly, $\mathbf{p}^* \geq \mathbf{0}$. Why?

Suppose, $p_k^* = 0$. Recall, we have

$$p_k^{\epsilon'}\left[M\epsilon' + \sum_{j=1}^M \max\{\bar{z}_j(\mathbf{p}^{\epsilon'}), 0\}\right] = \epsilon' + \max\{\bar{z}_k(\mathbf{p}^{\epsilon'}), 0\}.$$
(4)

as $\epsilon' \to 0$ while the LHS converges to 0, since $\lim_{\epsilon'\to 0} p_k^{\epsilon'} = 0$ and term $[M\epsilon' + \sum_{j=1}^M \max\{\bar{z}_j(\mathbf{p}^{\epsilon'}), 0\}]$ on LHS is bounded.

However, the RHS takes value 1 infinitely many times. Why? This is a contradiction, because the equality in (4) holds for all values of ϵ' . Therefore, $p_j^* > 0$ for all j = 1, ..., M. That is,

$$\mathbf{p}^* >> \mathbf{0}, i.e.,$$

 $\lim_{\epsilon \to 0} \mathbf{p}^\epsilon = \mathbf{p}^* >> \mathbf{0}.$

In view of continuity of $\bar{z}(\mathbf{p})$ over \mathbb{R}^{M}_{++} , from (4) we get (by taking limit $\epsilon \to 0$): For all j = 1, ..., M

$$p_{j}^{*} \sum_{j=1}^{M} \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\} = \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\}, i.e.,$$

$$z_{j}(\mathbf{p}^{*})p_{j}^{*} \left(\sum_{j=1}^{M} \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\}\right) = z_{j}(\mathbf{p}^{*}) \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\}, i.e.,$$

$$\sum_{j=1}^{M} z_{j}(\mathbf{p}^{*})p_{j}^{*} \left(\sum_{j=1}^{M} \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\}\right) = \sum_{j=1}^{M} z_{j}(\mathbf{p}^{*}) \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\}, i.e.,$$

$$\sum_{j=1}^{M} z_{j}(\mathbf{p}^{*}) \max\{\bar{z}_{j}(\mathbf{p}^{*}), 0\} = 0.$$
(5)

You can verify that, given the definition of $\bar{z}_j(\mathbf{p}^*)$:

$$z_j(\mathbf{p}^*) > 0 \implies \max\{\bar{z}_j(\mathbf{p}^*), 0\} > 0;$$

$$z_j(\mathbf{p}^*) \le 0 \implies \max\{\bar{z}_j(\mathbf{p}^*), 0\} = 0.$$

Suppose, for some j, we have $z_j(\mathbf{p}^*) > 0$, then we will have

$$\sum_{j=1}^{M} z_j(\mathbf{p}^*) \max\{\bar{z}_j(\mathbf{p}^*), 0\} > 0.$$
(6)

But, this is a contradiction in view of (5). Therefore: For any j = 1, .., M, we have

$$z_j(\mathbf{p}^*) \le 0. \tag{7}$$

Suppose, $z_k(\mathbf{p}^*) < 0$ for some k. We know

$$p_1^* z_1(\mathbf{p}^*) + \dots + p_k^* z_k(\mathbf{p}^*) + \dots + p_M^* z_M(\mathbf{p}^*) = 0.$$

Since $p_j^* > 0$ for all j = 1, ..., M.

 $z_k(\mathbf{p}^*) < 0$ implies: There exists k', such that

$$z_{k'}(\mathbf{p}^*) > 0, \tag{8}$$

which is a contradiction in view of (7). Therefore,

For all
$$j = 1, ..., M$$
, we have: $z_j(\mathbf{p}^*) = 0, i.e.,$
 $\mathbf{z}(\mathbf{p}^*) = \mathbf{0}.$