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1 Basics

1.1 Individual UMP

Let us start with the utility maximization problem of the individuals in the economy.
We assume that individual consumers are price-takers. Let the set of price vectors be
p = (p1,....pm) € RY,. That is, (p1,....,pm) > (0,...,0). Now, the consumer ¢ will
choose the her optimum bundle by solving:

max u'(x) st px<p.e
XGRi

Assumption 1 For all i € I, v’ is continuous, strongly increasing, and strictly quasi-
concave on RY.

The utility function, u¢, is said to be strongly increasing if for any two bundles x
and x’
x' > x = u'(x) > u'(x).
In view of monotonicity of the preferences, for given p = (p1,...,pp) >> (0,...,0),
consumer ¢ solves:

max u'(x) s.t. p.Xx=p.e (1)
XER]_E

From the first part of the course, you know that when u’(.) satisfies assumptions
listed above, the following result holds.

Theorem 1 Under the above assumptions on u'(.), for every (p1, ..., par) > (0,...,0),
(1) has a unique solution, say x'(p, p.e’).

*References are: Arrow and Debreu (1954), and McKenzie (2008); Arrow and Hahn (1971). Jehle
and Reny (2008).
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Note: For each i =1,..., N,
x'(p,p-e’) : RY, — R
x'(p, p.¢’) = (zi(p, p.€’, 7} (P, p-€’).
Theorem 2 Under the above assumptions on u'(.), for every (p1,...,pa) > (0,...,0),

e x'(p,p.€) is continuous in p over RY.

o Foralli=1,2,..,N, we have: x'(tp) = x'(p), for allt > 0. That is, demand of
each good j by individual © satisfies the following property:

x?(tp) = x;(p) for all t > 0.

Question 1 Given that u'(.) is strongly increasing,
e is x'(p) continuous over RY ¢

e is the demand function x’(p) defined at p; = 07

1.2 Excess Demand Function
Definition 1 The excess demand for jth good by the ith individual is give by:
z;(p) = =j(p, p-e’) — ¢},
The aggregate excess demand for jth good is give by:
N N
zj(p) = Y _ai(p,p.e’) — > el
i=1 i=1
So, Aggregate Excess Demand Function is:
z(p) = (z1(p), -, 2m(P)),
Theorem 3 Under the above assumptions on u'(.), for any p >> 0,
e z(.) is continuous in p
e z(tp) = z(p), for allt >0

e p.z(p) =0. (the Walras’ Law)



For any given price vector p, we have

i

pxi(p pe)—pe = 0,ie,

Zp] (p,p.e’) ]] = 0.

This gives:
ZZp] (p,p.e’) J] = 0,i.e.,
i=1 j=1
ZZPJ (p,p-€") ] = 0,1i.e.,
1 =1
o N N
Z Zx p,p.e’) Ze = 0
j=1 =1 =1
That is,
M
ijzj = 0,i.e.,
j=1
pz(p) = 0
So,

p121(P) + p2z2(P) + .. + pj—12j-1(P) + Pj+12i41(P) + +pmzm(P) = —p;%(P)

For a price vector p >> 0,

o if z;;(p) = 0 for all j' # j, then z;(p) = 0
e For two goods case,
p121(p) = —p222(P).
So,

21(p) > 0= 2z3(p) <0; and z;(p) =0 = 23(p) =0
1.3 Walrasian Equilibrium

Definition 2 Walrasian Equilibrium Price: A price vector p* is equilibrium price vec-
tor, of forall g =1,....J,

N N
z;(p*) = Za:;(p*,p*.ei) - Zeﬁ- =0, e, if
i=1

i=1



Two goods: food and cloth

Let (ps,p.) be the price vector. We can work with p = (Z—i, 1) = (p,1). Since, we
know that for all ¢ > 0:

z(tp) = z(p)
Therefore, we have
pzs(p) + 2(p) = 0.

Assumptions:

e 2;(p) is continuous for all p >> 0, i.e., for all p > 0.

e there exists small p = € > 0s.t. zf(e, 1) >> 0 and another p’ > Ls.t. z,(p/, 1) <<
0.

2 Existence of Walrasian Equilibrium: General Case

As demonstrated above, the individual demand functions are homogenous functions of
degree zero. That is, for all ¢ = 1,2,..., N, x‘(tp) = x'(p), for all £ > 0. Moreover,
the excess demand function is also homogenous function of degree zero. So, it has the
following property: z(tp) = z(p), for all t > 0.

Without any loss of generality, we can restrict attention to the following set of
prices:

M
€

j=1

where ¢ > 0.

Note that the set P, contains its boundaries. So, it is closed. Moreover, it is easily
seen that the P, is non-empty, bounded, and convex set for all € € (0, 1).

Theorem 4 Suppose u'(.) satisfies the above assumptions, and e >> 0. Let {p®} be
a sequence of price vectors in Rf +, such that

e {p°} converges to p, where
e p e RY, p+#0, but for some j, p; = 0.

Then, for some good k with pr = 0, the sequence of excess demand (associated with
{p*}), say {zx(p®)}, is unbounded above.

Theorem 5 Under the above assumptions on u', there exists a price vector p* >> 0,
such that z(p*) = 0.



2.1 WE: Proof

We are familiar with the properties of the excess demand function z;(p) for every good,
j=1,..., M. In the proof we will use this function to derive some other functions that
will be useful in proving the result. First of all, let us define a function,

%j(p) = min{z;(p), 1}. (2)
Note by its specification, z;(p) = min{z;(p), 1} < 1. Therefore, we have
0 < max{z;(p),0} < 1.

Next, we want to define a function f(p) = (fi(p),..., fu(p)) : Pc — P.. Note that
f(p) : P. — P. if and only two conditions are met. First, f1(p) >> 5+ should hold

1+2M
for every j =1,.., M. Second, Zj\il fi(p) =1.

Suppose, we specify a function such that: For j =1,... M,

Y € + pj + max{z;(p), 0} _ N;(p)
hiw eM +1+ 37 max{z(p),0}  D(p)

Y

For this specification, we have Z]]\il fi(p) = 1. Moreover, using the facts that max{z;(p),0} <
1, e <1 and p; > 0, you can check that the following inequalities hold:

filp) > —ilP) ¢ >
eM+1+M.1 eM +14+ M.1 14+2M

Therefore, both of the above conditions are satisfied. So,

f@) = (fi(p), -, fu(p)) : Pe = Pe.

Also, since D(p) > 1 > 0, the function f(p) is a well defined and continuous
function defined over a compact and convex domain. Therefore, by the Brouwer’s
fixed-point theorem, a ‘Fixed Point’ exists. That is, there exists p¢ such that

f(p°) =p,ie,
For all j =1,.., M, we have: f;(p°) = pj. Using the full form of f;(.), this implies that
forall j =1,.., M,

€ + p; + max{z;(p), 0}
eM + 1+ 3071, max{z(p), 0}

— € 7
= pj,ie.,

pi[Me+> max{z(p9),0}] = e+max{z(p°),0}. (3)

Jj=1

Next, we let ¢ — 0. Consider the sequence of price vectors {p‘}, as e — 0.



e Sequence {p}, as € — 0, has a convergent subsequence, say {pel}. Why?
e Let {p“'} converge to p*, as € — 0.

e (learly, p* > 0. Why?

Suppose, p; = 0. Recall, we have

M
pi | M+ max{z(p7), 04| = ¢ + max{z,(p), 0}. (4)

j=1

as ¢ — 0 while the LHS converges to 0, since limg_,op = 0 and term [M¢' +
ij‘il max{Z;(p®),0}] on LHS is bounded.

However, the RHS takes value 1 infinitely many times. Why? This is a contradic-
tion, because the equality in (4) holds for all values of €. Therefore, p; > 0 for all
7 =1,..,M. That is,

p*>>0,i.e.,
limp® =p* >> 0.
e—0

In view of continuity of z(p) over RY,,

from (4) we get (by taking limit € — 0):

Forall j=1,..,. M

M
p; Y max{z(p*),0} = max{z(p*),0} ie.,
=1

% (P*)pj (Zmax{fj(P*)aO}> = z;(p") max{z;(p*),0},i.e.,

'z:zj(p*)p;If (Z max{zj(p*),0}> = sz(p*)max{ij(p*),()},i.e.,
D 2(p") max{z(p"), 0} = 0. (5)

You can verify that, given the definition of z;(p*):

5(p7) >0 = max{z(p"),0} > 0:
5(p7) <0 = max{z(p),0} =0,

Suppose, for some j, we have z;(p*) > 0, then we will have



M

Y z(p") max{z(p*),0} > 0.

j=1

But, this is a contradiction in view of (5). Therefore:
For any 7 =1,.., M, we have
z(p*) <0.



Suppose, z;(p*) < 0 for some k. We know

piz(P*) + oo + prze(P) + oo + Pz (pT) = 0.

Since p; > 0 for all j =1,.., M.

2k(p*) < 0 implies: There exists k', such that
2z (p*) > 0,
which is a contradiction in view of (7). Therefore,

For all j=1,..,M, we have:z;(p*) = 0,i.e.,
z(p*) = 0.



