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Chapter 4 Imperfect Information 

 

In our discussion to this point we have assumed that there is perfect and symmetric information 

among all agents involved in the design and execution of environmental policy.  This has 

allowed us to refer to damage and cost functions that are fully observed by the regulator, firms, 

and households alike.  Among other things, the full information assumption helped us establish 

the equivalency of auctioned permits and emission taxes, and more generally suggested that a 

particular pollution reduction goal can be obtained using one of several economic incentive 

instruments – all of which have similar efficiency properties.  Though it is pedagogically useful, 

a perfect information assumption is a clear departure from reality.  In this chapter we begin to 

consider how imperfect information may alter the effectiveness and efficiency properties of the 

policy instruments.  

 

Imperfect information plays a large role in environmental economics, and as reviewed by 

Pindyck (2007), it comes in many guises.  In this chapter we focus on a particular type of 

uncertainty:  the regulator’s inability to fully observe aggregate pollution damage and abatement 

cost functions.  Importantly, we assume for this analysis that firms know their own abatement 

cost functions with certainty.  Once we acknowledge that these functions must be estimated by 

the regulator (inevitably with error), it is natural to ask about the extent to which estimation error 

influences the performance of different regulatory approaches.  Casual intuition suggests 

estimation errors will result in imprecise policy, but will not cause us to systematically favour 

one approach over another.  Investigation of the extent to which this intuition holds began with 

Weitzman’s (1974) classic paper, and has continued in various forms to this day.  The unifying 

theme in this large literature is a search for policy instruments that minimize the ex post 

inefficiencies that occur due to the regulator’s uncertainty.  A related literature beginning with 

Kwerel (1977) examines ways that the regulator can design mechanism that resolve the 

uncertainty, thereby eliminating ex post inefficiencies.   In this chapter we examine these two 

strands of literature.   

 

In focusing on uncertainty related to abatement cost and damage functions, we abstract for now 

from other types of imperfect information.  Importantly, in what follows we assume that 
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aggregate and firm-level emissions are perfectly observed.  Thus we abstract from moral hazard 

issues that arise when the regulator cannot monitor firms’ pollution and abatement outcomes.  

Furthermore, since abatement costs are deterministic from a firm’s perspective, we do not 

examine their behaviour under state of the world uncertainty.  Finally, our discussion in this 

chapter is static in nature; dynamic issues such as irreversibility, learning over time, and 

discounting are not addressed.  We address these additional topics related to uncertainty in 

subsequent later chapters.   

 

4.1 Price versus quantities 

We begin with a comparison of emission taxes and marketable pollution permits under imperfect 

information.  Weitzman (1974) and Adar and Griffin (1976) present similar research designed to 

determine the conditions under which price instruments such as emission taxes or quantity 

instruments such as transferable permits will dominate under different types of uncertainty.  We 

follow convention in this area by first examining damage function uncertainty with known 

abatement costs, and then cost function uncertainty with a known damage function.  We examine 

the efficiency properties of taxes and permits in these cases and establish some qualitative 

results.  Using the method described by Weitzman, we then add structure to the damage and 

abatement cost functions, which allows us to derive more precise descriptions of the 

ramifications of the two types of uncertainty.  We close our discussion on prices versus 

quantities by commenting on how current policy and research continues to be influenced by 

these findings.   

 

4.1.1 Damage function uncertainty 

Continuing our established notation define D(E) as the social damage function from aggregate 

pollution level E, C(E) as the aggregate abatement cost curve, and D′(E) and −C′(E) as the 

marginal damage and aggregate marginal abatement cost curves, respectively.  Denote the 

optimal level of pollution by E
*
 and recall that this is defined as the solution to −C′(E)=D′(E).  

The functions D(∙) and C(∙) summarize true schedules that, under different scenarios, may be 

imperfectly observed by the regulator.  Functions that are estimated with error are denoted with 

‘~’, so that ( )D   and ( )C   are the estimated abatement cost and damage functions, and ( )D   and 

( )C   are their respective derivatives.   
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Consider first the case where the regulator knows −C′(E) with certainty, but uses the damage 

function estimate ( )D E  to choose a policy emission target.  Suppose for illustration that the 

regulator underestimates the marginal damage function so that  

 ( ) ( ) ,D E D E E    (4.1) 

and that she chooses a policy target E  based on the relationship ( ) ( ).C E D E     Two related 

questions arise from the fact that *E E  in general:  what is the welfare (efficiency) loss from 

targeting ,E  and does the size of the loss depend on the instrument choice?  The welfare loss is 

defined as the difference between total social costs realized at E  and those that would occur at 

E
*
: 

 

 

* *

* *( ) ( ) ( ) ( )

( ) ( ) .

E E

E E

WL D E C E D E C E

D E dE C E dE

     

    
 (4.2) 

The welfare loss for our particular case is illustrated by Panel A of Figure 4.1, shown as area a.  

Since the emission level is set too high, *E E  units of pollution having higher marginal damage 

than marginal abatement cost are emitted.   

 

The figure also shows that, under this scenario, the choice of emission tax versus transferable 

permits results in the same welfare loss.  For the former the regulator sets ( ),E  and for the latter 

she distributes or auctions L E  permits.  Since the polluting firms choose emissions such that 

( ),C E    both policy instruments result in the same ex post level of pollution, and hence the 

same welfare loss.  That the same result holds when the marginal damage function is 

overestimated is also clear from the figure.  From this we see that damage function uncertainty 

by itself should not cause the regulator to favour one instrument over the other.   

 

4.1.2 Abatement cost function uncertainty 

Suppose now that the regulator knows D(E), but needs to use an estimate of C(E) to set the 

pollution target.  For illustration we assume that 

 ˆ( ) ( ) ,C E C E E E       (4.3) 
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which is to say that the regulator underestimates the true marginal abatement cost curve for all 

policy-relevant emission levels.  She chooses the emission target E  based on the relationship 

( ) ( ).C E D E     Thus the a priori target implies a level of emissions that is too low relative to 

the optimum.  The ex post emission level and welfare loss, however, will depend on the actual 

policy chosen.  

 

The difference between the tax and permit policies is shown in Panel B of Figure 4.1.  Under the 

quantity instrument the regulator supplies L E  permits to the polluting firms, and the permit 

price ( )E  emerges at the point where permit supply intersects the true aggregate marginal 

abatement cost curve.  Thus the quantity of emissions is fixed by the regulator, but the price is 

based on firms’ behaviour.  Under the tax instrument the regulator administratively sets an 

emission fee ( ),E  and firms react by choosing emissions to equate the tax level to their true 

marginal abatement cost curve.  In the figure this causes the ex post aggregate emission level to 

be ( ).E    In contrast to the quantity instrument, here the emission price is set and the aggregate 

emission level is determined by firms’ behaviour.  In a qualitative sense abatement cost 

uncertainty clearly matters, since the two policies lead to different emission level outcomes.  But 

is there a systematic difference in the efficiency properties of taxes and permits?  

 

In Panel B of Figure 4.1 the welfare loss from the quantity instrument is area b and the welfare 

loss from the tax instrument is area c, which are given analytically by 

 

* *

* *

( ) ( )

( ) ( )

( ) ( ) .

E E

E E

E E

E E

b C E dE D E dE

c D E dE C E dE

 

   

   

 

 

 (4.4) 

Inspection of the figure and the analytical expressions suggests that we cannot make a general 

statement about the relative size of the welfare losses – i.e. in some instances b>c and in others 

c>b.  We can, however, try to isolate the features of the cost and damage functions that will 

cause one to be larger than the other.  For intuition in this regard consider Figure 4.2.  Panels A 

and B are drawn to reflect the same true and estimated abatement cost functions, as well as the 

same policy target .E   The figures differ only in the steepness of the marginal damage curve as it 
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passes through ( )C   at E  (albeit dramatically to make our point).  In both cases the regulator 

distributes L E  to implement a quantity instrument or sets ( )E   to implement a price 

instrument.  In Panel A the steep, known marginal damage curve restricts the relative gap that 

can arise between E  and E
*
, while the unknown marginal abatement cost curve implies the 

relative size of the gap between ( )E   and E
*
 is not bounded.  The tax instrument in this case 

leads to the higher welfare loss – i.e. b>a – due to the larger resulting distance between the 

optimal and realized emission level.  The opposite is true in Panel B.  Here the flat marginal 

damage curve bounds the difference arising between ( )E  and the optimal but unknown 

emission tax, so that the gap between ( )E   and E
*
 is small.  In contrast estimation error in the 

marginal abatement cost curve implies the relative gap between E  and E
*
 is not bounded.  With 

a flat marginal damage curve c>d, and a tax policy leads to a smaller welfare loss.   

 

This intuition can be made more formal by writing the marginal damage function to include an 

explicit parameter for its slope.  We rewrite the damage function as D(E,), and assume that 

DE∙.  Note that (as implied by Figure 4.2) the optimal pollution level E
*
 depends on , 

which we here denote E
*
().  The following proposition summarizes the consequences of 

abatement cost function uncertainty when the marginal damage function is known:

 

Proposition 4.1 

Suppose the regulator has an estimate of the aggregate marginal abatement cost curve such that 

( ) ( ).C E C E      Consider a pollution target E  defined by ( ) ( , ),EC E D E    a class of 

marginal damage functions ( , )ED E   running through ,E  and a tax level ( ).E   For larger 

values of  – i.e. a steeper marginal damage curve –  

i. the gap *| ( ) |E E   becomes smaller and the welfare loss under a permit policy shrinks, 

and  

ii. the gap *| ( ) ( ) |E E   becomes larger and the welfare loss under a tax policy increases, 

where ( )E   is the emission level that occurs under the tax ( ).E   

This proposition is illustrated by Figure 4.3, for which 1<2.  As the marginal damage curve 

pivots from DE(E,) to DE(E,), the optimal pollution level moves closer to ,E  and the welfare 
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loss from a permit policy based on L E  shrinks from area a+b+c to area a.  Simultaneously the 

pivot in the marginal damage curve causes the optimal emission level to shift further away from 

( ),E   and the welfare loss under a tax policy based on ( )E   increases from area e to area 

d+e.  Thus all else equal, a flatter marginal damage curve favours a tax approach to regulation, 

and a steeper marginal damage function favours a permit approach.   

 

4.1.3 Weitzman Theorem 

Our discussion to this point has been intuitive more than formal in that we have primarily used 

graphs to highlight the role of relative slopes in determining the performance of tax and permit 

policies under uncertainty.  We have not yet presented a general result summarizing how slope 

features of both abatement cost and damage functions determine the second best optimal policy 

when uncertainty is present.  For this purpose it is necessary to introduce additional structure to 

the model.  Define the damage function once again by D(E,), where  is now a random variable 

representing the regulator’s uncertainty about the damage function.  As usual DE(∙)>0 and 

DEE(∙)>0; we also assume D(∙)>0 and DE(∙)>0 so that increases in  shift up both the damage 

and marginal damage functions.  Similarly define the aggregate abatement cost function by 

C(E,), where  is a random variable representing the regulator’s uncertainty about abatement 

costs.  To our familiar assumptions −CE(∙)>0 and −CEE(∙)<0, we add that  enters the cost 

function so that total and marginal abatement cost are increasing in ; that is, C(∙)>0 and 

−CE(∙)>0.   

 

Faced with uncertain damage and abatement cost functions, the regulator’s task when designing 

a quantity instrument is to find the emission target that minimizes the expected sum of abatement 

costs and damages: 

  min ( , ) ( , ) ,
E

EV C E D E   (4.5) 

where EV is the expected value operator.  The emission target E  satisfies the first order 

condition 

    ( , ) ( , ) .E EEV C E EV D E    (4.6) 

To implement the quantity instrument, the regulator issues or auctions L E  permits to the 

polluting industry.  Under such a quantity instrument the expected social cost at pollution level 
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E  is 

 ( ) ( , ) ( , ) .QESC E EV C E EV D E          (4.7) 

 

Things are somewhat more complicated under the tax policy.  Behaviour among polluting firms 

determines the aggregate emission level under a tax policy according to –CE(E,)=.  We can 

solve this for E=E( which is the ex post emission level that arises given firms’ actual costs 

and a particular tax rate .  Knowing the response function E(∙) but not the value of , a rational 

regulator’s objective is to choose  to solve the problem 

    min ( , ), ( , ), ,EV C E D E


         (4.8) 

which arises from substituting E=E( into (4.5).  er choice of tax instrument   satisfies the 

first order condition 

    ( , ), ( , ) ( , ), ( , ) ,E EEV C E E EV D E E                     (4.9) 

where E∙ is the partial derivative with respect to   Using the identity  ( , ),EC E       and 

substituting into (4.9) we obtain  

      ( , ) ( , ) ( , ), ( , ) ,EEV E EV E EV D E E                    (4.10) 

from which we can implicitly define the target tax rate   by 

 
 

 

( , ), ( , )
.

( , )

EEV D E E

EV E





    


 

    (4.11) 

The expected social cost from pollution under this price instrument is 

    ( ) ( , ), ( , ), .PESC EV C E EV D E               (4.12) 

Ex post, it is generally the case that ( , ),E E   and so the preferred second best policy depends 

on the relative sizes of ESC
Q
 and ESC

P
.   

 

To gain traction on comparing the two expected social cost levels, we approximate the true 

abatement cost and damage functions using a second order Taylor series expansion around .E   

Define 
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 

 

2 2
1

2 2
1

( , ) ( ) ( ) ( )
2

( , ) ( ) ( ) ( ) ,
2

C E c E E E E

D E d E E E E

  

  


       


       

 (4.13) 

where  and  are zero mean random variables, c() and d() are random functions, and 

( are constants.  Differentiating with respect to E, the implied marginal damage 

and marginal abatement cost functions from these approximations are 

 
 1 2

1 2

( , ) ( )

( , ) ( ).

E

E

C E E E

D E E E

 

 

      

    
 (4.14) 

A few things about these functions are noteworthy.  First,  and  summarize the regulator’s 

uncertainty about the marginal damage and cost curves, and they serve to shift up and down the 

marginal damage and abatement cost curves.  Second, if we evaluate the functions at ,E E  

from (4.14) we can see that  

 
1

1

( , ) 0

( , ) 0,

E

E

EV C E

EV D E





    

    

 (4.15) 

since EV()=EV()=0 and the last terms drop out when .E E   Finally, differentiating the 

marginal damage and abatement cost approximations with respect to E leads to  

 
2

2

( , ) 0

( , ) 0.

EE

EE

C E

D E





 

 
 (4.16) 

 

The Taylor series approximation allows us to derive a statement for ESC
P
−ESC

Q
 that depends 

only on terms with known signs.  We summarize this finding in the following proposition: 

 

Proposition 4.2 (Weitzman Theorem) 

For approximations of the abatement cost and damage functions given by equation (4.13), and 

for  and  independently distributed with expected value of zero, the comparative advantage of 

a price instrument over a quantity instrument is 

 
 

2
2 2

2

2

( )
( ) ( ) ,

2

P QESC ESC E



 

 


 (4.17) 

where  



9 

 

Fixed typos 8 July 2011 

 

     
2

2 2( , ) ( , ) 0.E EEV C E EV C E EV        
 

 (4.18) 

We provide a derivation of equation (4.17) in the appendix to this chapter, and give an 

opportunity to consider the case when  and  are correlated in Exercise 4.1.  

 

This result shows that the welfare loss difference depends on the relative steepness (in absolute 

value) of the marginal abatement cost and marginal damage functions.  Extreme examples can 

help to illustrate this finding.  If the marginal damage function is a horizontal line (i.e. all units of 

pollution contribute equally to total damages), then =0 and ( ) ( ) 0,P QESC ESC E    

suggesting a tax instrument will be the preferred choice.  In contrast, if the marginal abatement 

cost is constant, then =0 and ( ) ( ) 0.P QESC ESC E     This implies a system of pollution 

permits will be preferred.  The more general case is illustrated by Figure 4.4, where Panel A 

shows a comparatively steeper marginal damage curve, and Panel B shows a comparatively 

steeper marginal abatement cost curve.  The efficiency loss from tax and permit policies under 

both scenarios are shown as areas a, b, c, and d.  Note that in each case uncertainty in the 

marginal damage function (or a shift in its estimate) affects the size of the inefficiencies but not 

their ranking.  Consistent with the Weitzman Theorem, the characteristics of the functions in 

Panel A favour a quantity instrument, while those in Panel B favour a tax instrument.   

 

4.1.4 Contemporary policy and research relevance 

The theoretical results from the 1970s comparing price and quantity instruments continue to have 

relevance in both policy and research circles to this day.  The policy relevance comes from the 

fact that, while damage and abatement cost functions are almost always unknown, it is often 

possible to develop intuition on their shapes over the policy relevant range of emissions.  Climate 

change is a good case in point.  As discussed by Nordhaus (2007, p.37) and others, the marginal 

cost of greenhouse gas abatement is related to the current level of emissions and is therefore 

sensitive to the degree of reduction, as is the case for most common pollutants.  In contrast, the 

damages from greenhouse gas emissions occur based on the cumulative stock of gasses in the 

atmosphere; as such the marginal damage from an additional unit of CO2 emission, for example, 

is largely independent of how much CO2 is currently being emitted.  This intuition suggests the 

marginal damage of a particular ton of CO2 emitted is the same, whether it was the tenth or ten 
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thousandth ton emitted in a month.  These features suggest that, for climate change, the marginal 

abatement cost function is likely to be steeper than the marginal damage function, and all else 

being equal a tax approach to climate change policy is preferred to a permit-based scheme.  

Several authors (Metcalf, 2008, is a good example) have used this argument in policy debates to 

support their preference for carbon taxes rather than a system of tradable carbon emission 

permits.  

 

The research agenda launched by the original prices versus quantities analysis has focused on 

examining how specific features of policy design that were left out of the base model may 

interact with abatement cost and damage function uncertainty to alter the original conclusions.  A 

non-exhaustive list of specific areas that have been examined include correlated uncertainty 

(Stavins, 1996), modelling a stock externality (Newell and Pizer, 2003), and dealing with 

imperfect enforcement (Montero, 2002).   

 

4.2 Hybrid Policies  

Our analysis thus far has considered only linear tax schemes.  However, non-linear tax schemes 

may be preferred when the regulator has imperfect information about firms’ abatement cost 

curves.  Non-linear tax schemes are common in other contexts, the best example being 

progressive income taxes in both Europe and the United States, where the marginal tax rate 

depends on a person’s income.  In principle something similar could be used for environmental 

policy.  Consider again the case of a known damage function D(E) but unknown abatement cost 

function, and define a pollution tax schedule  based on total emissions such that D′(E).  

Firm j’s pollution-related total cost under this type of policy is 

 ( ) ( ) ,j j j jTC C e E e    (4.19) 

where Cj(∙) and ej are the abatement cost function and emission level, respectively.  If we assume 

that firms cannot influence the tax schedule (i.e. each behaves as a price taker regarding the tax 

system), the first order condition for cost minimization results in −C′j(ej)=D′(E) for all 

firms, suggesting the condition for optimal pollution is met.  Intuitively, the regulator and the 

firms know the marginal damage function, but only firms know their abatement cost function.  

The regulator sets the tax rate ex post to the level of marginal damage that occurs based on the 

observed pollution level.  If the industry emits E>E
*
, a comparatively high emission fee (i.e. far 
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up the D′(E) curve) is assessed ex post, and firms must pay a marginal tax rate that is higher than 

their marginal abatement cost at E.  If the industry emits E<E
*
 a low emission fee is assessed, but 

firms’ marginal abatement cost level at E is higher than the marginal tax rate.  In either case 

firms would have been better off at E
*
, since it is only at this emission level that the ex post tax 

will be equal to the marginal abatement cost level.   

 

Though attractive in concept, a non-linear tax scheme as described here is fraught with practical 

difficulties.  Since firms do not know the actual price when making emission decisions, this logic 

only holds when firms have knowledge of their own and their competitors’ cost structures.  In 

addition, tax bills based on collective rather than individual behaviour tend to be infeasible from 

a moral and fairness perspective.  For this reason research has focused on investigating policies 

that mimic features of a non-linear tax, but do so without similar barriers to their use.  By and 

large these have taken the form of hybrid policies that combine elements of tradable permit and 

emission tax instruments.  In this section we review theoretical developments in this area.   

 

4.2.1 Safety valves 

Roberts and Spence (1976) suggest a mixed system in which a polluting industry receives an 

allocation of transferable permits to cover emissions, as well as the option to pay a tax on 

emissions that are not covered by a permit or receive a subsidy for permits that are not used.  By 

providing a safety valve in the form of the announced prices, the regulator guards against the 

more extreme consequences of improperly estimating E
*
 due abatement cost uncertainty.  To see 

how the mechanism works, consider the following additions to our model.  The regulator 

distributes or auctions L E  permits based on the known damage function and her estimate of 

the aggregate marginal abatement cost function.  Denote the price of an emission permit by , 

and the quantity of permits that firm j holds after the permit market clears by ēj.  The regulator 

announces a tax  that firms must pay for all emissions in excess of their permit holdings, so that 

the tax bill is (ej−ēj) if ej>ēj.  She also announces a subsidy  that firms receive for each permit 

they hold but do not use.  For ej<ēj the subsidy amount is given by (ēj−ēj).   

 

Under this type of policy firm j chooses ej and ēj to minimize its pollution related expenses 

according to 
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,

( ) ( )
min .

( ) ( )j j

j j j j j j j

j
e e

j j j j j j j

C e e e e e e
TC

C e e e e e e

 

 

   
 

   
 (4.20) 

Before examining the firm’s optimal behaviour, consider the following argument for why, in 

equilibrium, the permit price must be bounded from above by the tax rate and from below by the 

subsidy.  To see this, suppose instead that .  In this case firms will always choose to pay the 

emission tax rather than covering emissions with the more expensive permits.  Firms will sell 

their permits (or not bid in the case of auctioned permits), and the permit price will fall at least 

until ≤.  If  firms could earn profit by buying permits at  and turning them back in for the 

larger amount   This type of arbitrage opportunity will increase the demand for permits, and 

push the price up at least until ≤.  So in equilibrium, it must be the case that ≤≤.   

 

This condition suggests there are three types of firm-level outcomes that we can observe.  If 

<< firms set ej=ēj, since it is cheaper to cover emission with a permit than to pay the tax, and 

holding extra permits to receive  results in a loss per permit.  In this case firms operate such that 

−C′j(ej)=.  If instead = firms operate such that −C′j(ej)=, and emission levels are not 

constrained by the supply of permits that was original distributed.  Finally, if =firms operate 

such that −C′j(ej)=, and there will be an excess supply of permits, resulting in less pollution than 

the regulator’s target.  The Roberts and Spence mechanism is a hybrid in that in some instances it 

functions like a price instrument, and in others like a quantity instrument.  The tax rate provides 

a safety valve to polluting firms, in that it assures that emission rights will always be available at 

a fixed and known price, regardless of the position of the actual or estimated marginal abatement 

cost curve.  The subsidy rate provides a safety valve for the environment, in that emission 

reductions beyond that implied by L can still be achieved when marginal abatement costs are 

overestimated by the regulator.   

 

A hybrid policy of this type provides advantages over pure price or quantity instruments when 

the regulator is uncertain about abatement costs.  If she underestimates the aggregate marginal 

abatement cost curve (and therefore the price of permits), the tax rate serves to cap how high 

firms’ marginal abatement cost levels can climb.  If the regulator overestimates the aggregate 

marginal abatement costs and (and therefore the price of permits), the subsidy assures there are 
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still incentives for emissions reductions.  These advantages are illustrated in Figure 4.5.  Panel A 

shows three different aggregate marginal abatement cost curves and policy parameters 

corresponding to ,L E   and   By specifying the prices along with the quantity the regulator 

can achieve an efficient outcome (zero welfare loss) for three possible marginal abatement cost 

curves.  For the cost function C
1
(E), the relevant policy parameter is  and firms receive 

subsidies for reducing emissions below .E   For C
2
(E) the market price of permits lies between  

and suggesting the quantity parameter L E  is in play.  Finally, for C
3
(E) the tax level 

determines aggregate emissions in that firms pay  for each unit of pollution beyond .E    

 

The more practical advantages of the hybrid system are shown in Panels B and C.  Panel B 

shows a case in which the regulator has underestimated the aggregate marginal abatement cost 

curve.  To implement a pure quantity instrument she would issue L E  and expect a price of   

to arise.  Once in place, such a policy would result in an actual price of  and a welfare loss 

given by area a+b.  If she instead implements a mixed instrument that also includes a safety 

valve tax , the realized level of emissions is E() and the welfare loss reduces to area c.  The 

parallel case in which the regulator overestimates the marginal abatement cost function is shown 

in Panel C.  If L E  permits were distributed without an accompanying subsidy price  there 

would be a gap of size *E E  between realized and optimal emissions, leading to a welfare loss 

shown by area d+e.  With the subsidy option included, firms accept payment to reduce emissions 

below the number of permits distributed, leading to aggregate emissions E() and the smaller 

welfare loss shown as area d.  So while the Roberts and Spence mechanism cannot prevent 

welfare losses from occurring, it does serve to limit their magnitude relative to pure quantity or 

price approaches.   

 

BOXED EXAMPLE  

Discussions over the inclusion of safety-valve like provisions are common in almost all of the 

ongoing debates regarding the formation of permit trading schemes for controlling CO2 

emissions.  The world’s largest existing carbon market is in the European Union, where the 

member states have agreed to limit carbon emissions through the European Union Emissions 

Trading Scheme (EU ETS).  For example, the EU ETS has a compliance design feature that 
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stipulates a 100€ fine per ton of CO2 emitted without surrendering an allowance.  This is not a 

pure safety valve, however, in that a covering allowance (a European Union Allowance, or EUA) 

from the next year’s allotment must subsequently be surrendered.  From the market’s founding in 

2005 until the time of this writing, the price of an EUA has generally not exceeded 30€, and fines 

have not been assessed for uncovered emissions.  In the United States a number of carbon 

trading schemes have been proposed and debated, though not implemented as of this writing.  An 

example carbon control bill from the US 110
th

 Congress – S.1766, the ‘Bingaman-Specter bill – 

stipulated a safety valve price on carbon emissions that would be available one month a year, 

during the time when emissions and allowances are being balanced.  See Murray, Newell, and 

Pizer (2009) and the citations therein for additional discussion.  

END BOXED EXAMPLE 

 

4.2.2 Approximating the marginal damage curve 

In a coarse sense the Roberts and Spence instrument traces out the marginal damage curve using 

step-wise constant functions.  This is most apparent in Panel A of Figure 4.5, where the price line 

firms face begins at , is vertical at ,E  and then levels off at .  Recall that the non-linear tax 

scheme discussed above defines the tax schedule to be the marginal damage curve.  Thus any 

policy that connects the effective price firms pay for emission rights to the marginal damage 

function will emulate the non-linear tax, and reduce the welfare loss that occurs due to 

uncertainty about abatement costs.  This realization has led researchers to consider 

generalizations of the price/quantity hybrid instruments that provide finer approximations to the 

marginal damage function, while avoiding the difficulties of non-linear taxes.   

 

In an appendix to their article Roberts and Spence themselves suggest a generalized version of 

their instrument in which a portfolio of permit types L1,...,LN is announced, along with 

corresponding tax levels N and subsidy levels N.  As market prices N for each 

permit type emerge, the regulator obtains a stepwise approximation to the aggregate marginal 

abatement cost curve.  From this she determines the optimal (i.e. welfare loss minimizing) permit 

supply, denoted Ln, from among the N that were announced.  Through a system of complicated 

side payments and purchases, she then adjusts the system so that only type n permits are held by 

the firms and n<n<n.  Thus a flexible permit supply system can, in principle, used to reduce 



15 

 

Fixed typos 8 July 2011 

 

the degree of inefficiency compared to the simple hybrid model.  In practice the Roberts and 

Spence mechanism is cumbersome to explain, and likely impossible to implement.  Nonetheless 

the idea is worth pursuing, and so we proceed by first presenting a simpler approach proposed by 

Henry (1989), which allows us to develop the intuition of approximating the marginal damage 

curve with multiple permit types.  We then discuss a related mechanism suggested by Unold and 

Requate (2001) that, given its reliance on familiar financial mechanisms, is more feasible to 

implement.  

 

Like Roberts and Spence, Henry’s (1989) approach uses a flexible supply menu of permits 

L1<L2...<LN, where L1 and LN are the lowest and highest conceivable emission levels, 

respectively.  For each interval (Ln−1, Ln], an upper threshold price n  and a lower threshold 

price n  are fixed and announced, where 1 .n n     The regulator uses the permit levels and 

threshold prices in the following algorithm to implement the instrument: 

a) Issue an initial amount of permits Ln based on the condition ( ) ( ),n nC L D L    and 

observe the permit market price  that emerges.  If ,n n     take no further action.   

b) If ,n   issue an additional Ln+1−Ln permits and observe the new price.   

i. If 1 1,n n      take no further action.  If 1n    an additional Ln+2−Ln+1 

permits are issued and a new price is observed.  This continues a total of K times 

until either ,n K n K      or .n K    

ii. If at iteration K the permit price emerges below the lower threshold such that 

,n K    buy back a quantity of permits (Ln+K−Ln+K−1)/2 and observe the permit 

price.  Continue buying back permits in smaller increments until .n K n K      

c) If ,n   buy back Ln−Ln−1 permits and observe the new price. 

i. If 1 1,n n     take no further action.  If 1,n    buy an additional Ln−1−Ln−2 

back and observe the market price.  This continues K times until either 

,n K n K      or .n K    

ii. If at iteration K the permit price emerges above the upper threshold such that 

,n K    issue an additional quantity of permits (Ln−K−Ln−K−1)/2 and observe the 

permit price.  Continue issuing additional permits in smaller increments until 
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.n K n K      

 

Henry’s algorithm allows the regulator to incrementally buy and/or sell permits at fixed and 

known prices, in order to adjust the permit supply level to correct errors based on her initial 

estimate of the industry’s costs.  Figure 4.6 displays a stylized example of how the algorithm 

unfolds.  Panel A shows how the permit levels and threshold prices trace out the known marginal 

damage curve in a step-wise fashion.  The behaviour of firms and the reactions of the regulator 

assure that the price firms ultimately face lies within the step through which the true but 

unknown marginal abatement cost curve runs.  This is shown in Panel B.  Two permit levels L1 

and L2 are drawn along with their respective threshold prices.  Based on her best estimate 

( ),C E  the regulator initially issues L1 permits.  The firms’ reaction, based on the true cost 

curve −C′(E), causes the initial permit price to be (L1), where 1 1( ) .L    Seeing this, the 

regulator issues an additional L2−L1 permits; this causes the market price for permits to fall to 

2 2( ) .L    In this example the regulator has over-adjusted, and she now needs to purchase 

permits back from the industry.  The figure shows a buyback of L2−L permits and a final price of 

(L), where 2 2( ) .L      With this buyback the regulator has reached her stopping point, 

and the final pollution/permit level occurs at E=L.  As the figure is drawn a small welfare loss 

still occurs relative to the optimal pollution level, but the iterative algorithm has allowed the 

regulator to come arbitrarily close to the optimum – without ex ante knowledge of the industry’s 

abatement cost function.   

 

While the Henry algorithm is intuitive, the institutional structure needed to actually implement 

such a policy is substantial.  In particular, multiple points of interaction between the regulator 

and the polluting industry are needed, and examples of such iterative approaches to 

environmental policy almost nonexistent.  With this as motivation, Unold and Requate (2001) 

describe a policy that is similar in spirit, but relies instead on financial institutions to adjust the 

supply of pollution permits to the near-optimal level.  To see their logic, consider the aggregate 

abatement cost curve function C(E,, where again denotes the regulator’s uncertainty, and it 

serves to shift the total and marginal abatement cost curves such that C(E,and −CE(E,.  

Suppose, however, that the regulator observes the upper and lower bounds on abatement costs 
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such that ( , )EC E   and ( , )EC E   are known, where   and   are the lowest and highest 

values can take, respectively.  Define *
0E  as the solution to * *

0 0( ) ( , ),ED E C E     and let *
NE  be 

similarly defined by * *( ) ( , ).N E ND E C E      Note that by assumption *
0E  and *

NE  are known by 

the regulator, so long as she can observe the damage function.   

 

With this as setup, the Unold and Requate instrument proceeds as follows.  First, the regulator 

formulates a menu of potential pollution levels E0,...,EN, where *
0 0E E  and * .N NE E   She then 

distributes or auctions L0=E0 pollution permits to the industry, and simultaneously announces a 

system of call options that allows firms to purchase additional permits at set prices, should they 

choose to do so.   Denote the quantity available for each of N options by co1,...,coN, and their 

corresponding striking prices as s1,...,sN.  Furthermore, let con and sn be a priori set by the 

regulator so that 

 
 

1

1
.

n n n

n

n kk

co E E

s D co





 

 
 (4.21) 

Thus the striking prices are ordered such that s1<s2<...<sN, and they serve to approximate the 

marginal damage curve at N discrete points in the same manner as the Roberts and Spence and 

Henry procedures.   If the polluting firms decide to do so, they can obtain additional pollution 

rights beyond L0 by exercising the options at the announced striking prices.  The first option to 

be exercised will be co1, since its striking price s1 is the lowest.  If there is still excess permit 

demand when co1 is exhausted, firms will exercise the next lowest priced option co2.  This 

continues until there is no longer excess permit demand at the striking prices for the remaining 

options.  In this sense the supply of permits is flexible, and the price that firms must pay as more 

permits are consumed, and correspondingly more pollution is emitted, is tied to the marginal 

damage curve.   

 

This is best seen through an example.  Suppose that upon the regulator’s release of L0 permits a 

(spot market) permit price of L0) would emerge, absent any call options.  With the call options, 

firms will find it optimal to exercise the first option, so long as s1<L0).  This puts downward 

pressure on  which continues so long as there are options available that cost less than  to 

exercise.  This leads to an equilibrium in which =sn, where sn is the striking price for the last 
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call option exercised by the industry.  The final emission level is determined by the familiar 

condition −C′(E,)=, and the ultimate supply of permits at large among the regulated firms is 

 

1

0 1

,

n

k nk
L L co co

E





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

  (4.22) 

where  is the fraction of the quantity con sold at sn.  Figure 4.7 displays the intuition of this 

process.  Here, the regulator distributes L0 permits and makes available four types of call options 

with quantities co1, co2, co3, co4 and striking prices s1, s2, s3, s4.  The initial reference price is 

(L0), but this cannot be an equilibrium since firms can exercise options and obtain pollution 

rights at the lower striking prices.  The options with striking prices s1 and s2 are exercised by 

individual firms, so that the total emission permit availability corresponds to E2.  At a price of s2, 

however, the marginal abatement cost curve shows there is still excess demand for emission 

allowances.  This leads some firms to obtain permits through the third call option, at a price of s3.  

Equilibrium is reached when some, but not all, of these options are exercised such that permits 

corresponding to emissions L=Ě are held by the industry, and the permit price settles at 

−CE(Ě,)=s3=Ě).  In this example the fourth call option is not exercised by the industry.  

Firms’ behaviour in the options market results in a pollution level that minimizes ex post 

inefficiency, based on the size and number of the call options.   

 

Compared to Henry’s flexible supply approach, the advantage here is that, once the regulator has 

issued the permits and options, she does not need to take further action, since firms’ decisions on 

exercising options determine the optimal outcome.  In this sense a system of flexible supply via 

call options is more feasible institutionally, and one can imagine such a policy being put in place.   

 

4.3 Mechanism design 

Our discussion thus far has focused on the design of policies that minimize welfare losses arising 

from the regulator’s uncertainty about firms’ abatement cost functions.  We have taken 

uncertainty as given and studied how taxes, permits, and hybrid instruments are best designed 

conditional on imperfect information.  From this perspective the main objective has not been to 

learn about firms’ abatement costs ex ante (though in some instances this information became 

available as the policy unfolded), and so we generally did not expect to obtain the ex post social 

optimum.  A good policy was judged by how close it came to the social optimum, and how 
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feasibly it could be implemented.   

 

An alternative perspective for studying the imperfect information problem is mechanism design.  

Mechanism design is an area of research that grew out of principle-agent problems in which 

asymmetric and incomplete information among players (e.g. workers, firms, regulatory agencies) 

with different incentives leads to sub-optimal outcomes.  The classic example is the 

employee/employer relationship in which workers do not always have incentive to act in the best 

interest of the firm.  The objective in these situations is to design ‘mechanisms’ – contracts or 

regulatory schemes – that align the incentives of all players such that their self-interested actions 

lead to the preferred group outcome.  In many instances this requires revelation of private 

information by the agents to the principle.   

 

In our case polluting firms are agents who hold private information about their abatement cost 

functions, without which the regulator cannot design efficient environmental policy.  The 

regulator must effectively ask firms about their abatement costs, and depending on the 

circumstances, firms may find it optimal to misrepresent or truthfully reveal their cost structure.  

Kwerel (1976) describes how this may play out in the case of simple permit or emission tax 

schemes.  For the former, firms would like to see a generous supply of emission rights, and so 

they have incentive to overstate abatement costs.  As is clear from the models developed earlier 

in the chapter, the regulator’s resulting overestimate of marginal abatement costs causes her to 

issue a number of permits that is greater than the true social optimum.  For tax schemes, firms 

would like to see an emission fee that is as low as possible, and so they have incentive to 

understate abatement costs.  Through her underestimate of marginal abatement costs, the 

regulator sets a tax level that is too low relative to what is needed to obtain the true social 

optimum.  Thus, in neither pure tax nor pure permit schemes do firms have incentive to fully 

cooperate.   

 

To obtain the information needed to implement an efficient policy the regulator needs to set a 

mechanism that manipulates firms’ payoff functions to be incentive compatible and individually 

rational.  Incentive compatibility means a firm’s best strategy is to reveal its true cost structure, 

given that other firms do as well, and individually rational means the firm will find it best to 
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participate in the mechanism.  A relatively small number of authors have considered 

environmental policy from the perspective of mechanism design.  Examples include Kwerel 

(1977), Dasgupta, Hammond and Maskin (1980), and Montero (2008).  In this section we briefly 

outline Kwerel’s approach for motivation, and then describe Montero’s mechanism in greater 

detail.  

 

4.3.1 Kwerel’s Mechanism 

Kwerel (1977) proposes a hybrid instrument in which the regulator announces a quantity of 

permits L and a subsidy  which the firm receives for each pollution permit it possess but does 

not use.  If the market for permits is competitive, a particular firm j minimizes pollution related 

costs by choosing emissions and permit holdings to minimize  

 
( ) ( )

( ) ( ) ,

j j j j j j

j j j j

TC C e e e e

C e e e

 

  

   

   
 (4.23) 

where as usual Cj(∙) is the abatement cost function, ēj is the stock of permits firm j holds, and  is 

the permit price.  The regulator sets L and  based on information she receives from the firms 

about their abatement costs.  In particular, each firm reports ( )j jC e  to the regulator, which in 

general may not be equal to the firm’s true cost function.  Information from all firms in the 

industry is used to construct an estimated aggregate marginal abatement cost function ( ),C E  

which the regulator uses to set the policy parameters L and  so that 

 ( ) ( ) .D L C L     (4.24) 

Kwerel’s claim is that the combination of a permit market and subsidy so structured will lead 

firms to report their true cost function such that ( ) ( ),j j j jC e C e     as long as firms believe all 

their counterparts will also truthfully report.  This allows the regulator to choose the socially 

optimal permit and subsidy levels L=E
*
 and , respectively.  

 

Showing that this is the case is relatively straightforward, and proceeds as follows.  First, if  

there is no advantage to holding an extra permit since the cost of doing so exceeds the revenue 

from returning it unused.  So ej=ēj for all firms, and the cost minimization problem in (4.23) 

implies that firm j chooses emissions such that −C′j(ej)=and aggregate behaviour leads to 
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−C′(L)=  If instead , equation (4.23) reduces to  

 ( ) ,j j j jTC C e e   (4.25) 

and individual and aggregate firm behaviour implies −C′j(ej)=  −C′(L).  Finally, the case where 

 cannot exist in equilibrium, since the demand for permits is infinite when such arbitrage 

profits are available, causing the price of permits to rise to .  These three cases imply that the 

equilibrium pollution permit price under policy parameters (L, ) is max{−C′(L)}.  Since 

the regulator has chosen D′(L), we can further note that  

  max ( ), ( ) .D L C L     (4.26) 

Thus firms face a price determined by their true abatement cost functions and the damage 

function, and they know this to be the case when announcing their cost type to the regulator.   

 

To close the argument, consider now the social optimum L=E
*
 defined, as always, by 

−C′(E
*
)=D′(E

*
).  Note that for any permit level L<E

*
 or L>E

*
, (4.26) implies the permit price  

will be higher than for L=E
*
.  This follows formally from the assumptions D″(∙)>0 and −C″(∙)<0, 

but it is most easily seen by inspecting any of the figures shown above that contain C′(∙), D′(∙), 

and E
*
 (e.g. Figure 4.1 Panel A).  Because firms’ pollution-related costs are an increasing 

function of  costs will be at a minimum when =D′(E
*
).  Thus under the assumptions of the 

model, firms can do no better than to reveal their true abatement cost type to the regulator, so the 

mechanism is incentive compatible.  More to the point, the regulator can achieve an ex post 

optimal level of pollution without knowing firms’ abatement cost functions ex ante.   

 

4.3.2 Montero’s Mechanism 

In recent research, Montero (2008) proposes a mechanism that is more general than Kwerel’s, 

and as such is applicable in a wider range of settings, including when the pollution permit market 

is not perfectly competitive.  In his model the regulator first auctions a fixed number of permits 

based on firms’ self-reported abatement cost functions, and then she reimburses firms a fraction 

of the revenue.  The auction rules assure that the outcome – i.e. the number of permits made 

available – is ex post efficient.  Furthermore, firms pay a net amount that is equal to their 

contribution to pollution damages; in this sense it is also ex post equitable from a polluter pays 

perspective.  The combination of generality, efficiency and equity properties, and ease of 
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implementation, makes this mechanism deserving of further study.   

 

For intuition, we first consider the case of a single firm with abatement cost function C(E), where 

we have dropped subscripts since the single firm is equivalent to the industry.  To implement the 

policy, the regulator informs the firm about the following steps, which are then executed: 

a) The firm submits a marginal abatement cost schedule ( ),C E  which in general need not 

be its true cost structure.  

b) The regulator sells L permits at a price of , where L and  are determined by 

( ) ( ) .C L D L       The firm pays the regulator ∙L and receives L pollution permits.  

c) The firm receives a fraction of the auction revenues (L), so that an amount (L)∙∙L is 

returned after the auction.  

 

Under these rules the firm decides what form of marginal abatement cost schedule to submit in 

order to minimize total pollution-related costs, which are 

 ( ) ( ) .TC C L L L L        (4.27) 

Note that the last term in the total cost expression is the revenue returned following the permit 

auction, and that if we substitute out =D′(L) based on the mechanism rules, the firm’s objective 

function is 

 min ( ) ( ) ( ) ( ) .
L

C L D L L L D L L       (4.28) 

Denote the solution to (4.28) – i.e. the level of pollution permits/pollution that minimizes total 

costs under the mechanism rules – by ,L  and the firm’s marginal abatement cost at this level of 

pollution by ( ).C L   Given this, the firm will announce a marginal abatement cost schedule 

running through ( ),C L  so that at ,L  it is the case that the true and announced functions overlap 

– i.e. ( ) ( ).C L C L      The rest of the announced schedule may or may not overlap with the 

true schedule.  

 

Consider now how L  is determined.  Differentiating (4.28) with respect to L leads to the first 

order condition 
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 (4.29) 

 

The regulator’s task is to announce (L) in a way that makes the condition in (4.29) match the 

condition for a social optimum, which is defined as the level of L that makes C′(L)+D′(L)=0.  For 

this, (L) needs to be set so that it satisfies  

 
( ) ( ) ( )

( ) ( ) ,
( ) ( )

D L L D L D L
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D L L D L
 
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 
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since this is the condition that needs to hold if we want (4.29) to collapse to C′(L)+D′(L)=0.  

Equation (4.30) can be viewed as a differential equation in L, which we can solve for (L) to 

obtain the correct payback function.  The solution is (see Montero, p. 515) 

 
( )

( ) 1 ,
( )

D L
L

D L L
  

 
 (4.31) 

which lies in the unit interval by the weak convexity of the damage function.  If we substitute 

(4.31) into (4.28) we see that the firm’s pollution-related total cost function is C(L)+D(L), which 

matches the regulator’s objective function.  This form of (L) will therefore induce the firm to 

set its emissions to the social optimum, and announce a marginal abatement cost schedule in the 

auction-relevant range that allows it to do so.  Furthermore, the firm bears both the cost of 

pollution abatement, and the damages from any remaining emissions.   

 

Examination of the range of values  might take in special cases helps further clarify the 

mechanism.  Note that when the damage function is linear (i.e. D(E)=d∙E) it is optimal for the 

regulator to set   In this case the mechanism is effectively an emissions tax set at the 

constant marginal damage level, which from our previous analysis we know to be optimal 

regardless of the abatement cost function.  More generally, it will be optimal for the regulator to 

keep a proportion, but not all, of the revenue she raises through the auction.  Figure 4.8 helps 

show why this is so.  Panel A displays the case in which   If the firm truthfully reveals its 

marginal abatement cost curve to be −C′(E), the regulator issues L
*
 permits at a price of 

.  The 

firm pays area a+b in abatement costs, and the permit expenditures 
∙L

*
 are fully refunded back 

to the firm.  If instead the firm reports its marginal abatement cost curve to be ( ),C E  the 

regulator auctions L  permits at a price of .   The firm now pays only area a in abatement costs, 
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and once again expenditures on permits are fully refunded.  Thus, when auction revenues are 

fully refunded, the firm spends less on regulatory compliance when it exaggerates its abatement 

costs.  The opposite case for  is shown in Panel B.  If the firm truthfully reports its abatement 

cost function, the regulator auctions L
*
 permits at a price of 

  The firm pays area c+d in 

abatement costs, and spends e+f+g+i+j+k+l to purchase permits, none of which is refunded.  If 

instead the firm reports ( ),C E  the regulator sets policy parameters L  and .   Abatement 

expenditures are now (the larger) area c+d+e+f+g+h, but the payment for permits falls to area 

k+l.  So long as j+i>h, the firm pays less in pollution-related costs if it underreports its abatement 

cost structure.  These two extreme cases echo Kwerel’s intuition about firms’ incentives under 

pure price and quantity instruments, and help illustrate why it is optimal for the regulator to 

balance the misreporting incentives by refunding some, but not all, of the auction revenue.   

 

Montero’s mechanism for multiple firms proceeds similarly to the single firm case.  The 

regulator informs the firms about the auction rules, and then the following steps are taken. 

a) Each firm j submits a marginal abatement cost schedule ( ).j jC e  

b) For each firm j, the regulator sums the collection of submissions { ( ) }k kC e k j    to 

obtain ( ),j jC E   which is the aggregate marginal abatement cost function absent firm j, 

where E−j=ek for all k≠j. 

c) For each firm j the regulator uses ( )j jC E   to compute a residual marginal damage 

function for firm j, defined as 

 ( ) ( ) ( ).j j j jD e D E C E      (4.32) 

d) The regulator clears the auction for each firm by determining the number of permits lj and 

the price j for each bidder according to the rule 

 ( ) ( ) .j j j j jC l D l      (4.33) 

Firm j spends j∙lj and receives lj pollution permits.    

e) Each firm j receives back a fraction of its expenditure on permits according to the rule 

 
( )

( ) 1 ,
( )

j j
j j

j j j

D l
l

D l l
  

 
 (4.34) 

where Dj(lj) is the integral of D′j(l) between 0 and lj.  The firm receives a rebate of j∙j∙lj. 
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Montero’s claim is that this mechanism is incentive compatible – i.e. firms will find it optimal to 

submit their true marginal abatement cost function – regardless of what other firms do.  Showing 

this analytically involves replacing D′(L) in the single firm case with D′j(lj) for each firm in the 

general case, so that the objective function for firm j is  

 min ( ) ( ) ( ) ( ) .
j

j j j j j j j j j j
l

C l D l l l D l l       (4.35) 

It follows analogously from the single firm derivation that plugging (4.34) into (4.35) results in 

total pollution related costs of Cj(lj)+Dj(lj), and the firm will announce its marginal abatement 

cost function based on the condition −C′j(lj)=D′j(lj).  The rules of the mechanism therefore result 

in each firms’ behaviour being determined by  

 ( ) ( ) ( ) .j j j j j j jC l C l D l         (4.36) 

Montero (p. 504) explains this condition as ‘...basically informing the firm that, whatever 

(abatement cost function) it chooses to submit to the regulator, that report, together with the 

other firms, will be used efficiently.’  Importantly, equation (4.36) suggests it is optimal for firm 

j to reveal its true cost function, regardless of what other firms do.  If other firms for some reason 

misrepresent their costs, D′j(∙) will be incorrect from an efficiency perspective, but firm j can still 

do no better than to announce its costs according to (4.36).  The mechanism therefore eliminates 

the role of expectations of other firms’ actions, and knowledge of competitors’ cost structures, in 

the decisions of any single firm.   

 

Figure 4.9 illustrates the mechanism and the efficiency consequences of its truth telling property.  

The curves −C′(E) and ( )j jC E  show the industry marginal abatement cost curves with and 

without firm j, respectively.  Note that E is the efficient pollution level and  is the 

corresponding efficient price, based on the intersection of −C′(E) and D′(E).  When ( )j jD e  is the 

true contribution by firm j to marginal damages and ( )j jC e  is its true marginal abatement cost 

curve, the two curves by construction must intersect at , and all firms face the same permit 

price in the regulator’s auction.  In this example firm j emits ej units and, based on its pre-

regulation emission level êj, the firm abates êj−ej units.  Thus the firm bears abatement costs 

traced out by the points ejaêj, and at the auction pays the area aej0 in permit costs.  The 

reimbursement mechanism, however, implies that firm j receives a refund that results in its total 
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regulation-related expenditures are given by the area baêj0.  This is just equal to the sum of the 

firm’s abatement costs, and its contributions to total damages.   

 

4.4 Summary 

Our objective in this chapter has been to introduce uncertainty in abatement cost and damage 

functions, and examine how this generalization changes the efficiency properties of the policy 

instruments introduced in the previous chapter.  By limiting attention to a specific type of 

uncertainty – the regulator’s inability to fully observe the damage function and/or firms’ private 

abatement cost functions – three fairly robust conclusions emerge.   

 

First, the ex post efficiency properties of emission taxes and marketable permits generally 

diverge when uncertainty is introduced.  This is in contrast to the certainty case, for which the 

full menu of economic incentive approaches provided similarly efficient outcomes, and varied 

only in their distributional impacts.  The specifics of how taxes and permits (i.e. price and 

quantities) diverge under uncertainty have been well established in the three plus decades since 

Weitzman’s (1974) seminal article.  When the uncertainty in the damage function and the cost 

function are uncorrelated it is the case that 

 damage function uncertainty does not affect the relative performance of price versus 

quantity instruments, and 

 abatement cost function uncertainty affects the relative performance based on the fact that 

ex post pollution levels will differ under price and quantity instruments due to the 

unknown position of the aggregate marginal abatement cost curve.   

 

The preferred instrument under the latter type of uncertainty depends systematically on the 

curvature properties of the aggregate damage and abatement cost functions.  A flat marginal 

damage curve relative to the marginal abatement cost favours a tax instrument, while a steep 

marginal damage curve favours a permit instrument, all else equal.  Using linear approximations 

for the damage and abatement cost functions, Weitzman provides a simple formula relating the 

efficiency loss under both instruments to the slope parameters for the two functions, and the 

variance of abatement cost function.  From this we learn that the efficiency loss due to 

uncertainty is absolutely larger when the estimates for the functions are less precise, but that 
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relative efficiency loss between emission taxes and permits depends on the relative slopes of the 

marginal damage and abatement cost functions.  If the (absolute value) of the slope of the 

marginal abatement cost curve is greater than the (absolute value) of the slope of the marginal 

damage curve, a tax approach minimizes the ex post welfare loss.  If the opposite holds – i.e. the 

magnitude of the slope of the marginal damage function is greater – a permit approach is 

preferred.  

 

A defining characteristic of the Weitzman theorem and related research is that ex post 

inefficiency remains regardless of whether the correct price or quantity instrument is chosen ex 

ante.  Thus related research has examined the potential for hybrid instruments that mix elements 

of price and quantity controls to improve on the performance of either alone.  Our second major 

conclusion regarding uncertainty emerges from our review of Spence and Robert’s (1976) hybrid 

policy proposal, and subsequent research.  Specifically, combining a permit trading scheme with 

floor/ceiling limits (i.e. safety valves) on the permit price guards against the extreme 

consequences of a poorly estimated marginal abatement cost function.  If abatement costs are 

higher than expected by the regulator, firms can pay an emission fee to obtain pollution rights 

beyond the initial permit distribution.  If abatement costs are lower than expected, the regulator 

can secure additional pollution reduction through an effective buyback of permits.  In either case, 

the efficiency loss is smaller than would occur under a permit or tax only approach.  More 

generally, the ex post efficiency loss can be made arbitrarily small if a flexible system of permit 

supply can be used to provide price incentives that trace out the marginal damage curve.  Unold 

and Requate’s (2001) proposal in which a polluting industry receives a minimum supply of 

permits, as well as a series of call options to obtain additional pollution rights as needed, can in 

principle provide the correct price signals to the industry within a realistic institutional structure.   

 

Finally, our examination of mechanism design suggests that environmental policy can be 

formulated in a way that leads to ex post efficiency (as opposed to minimized efficiency loss) if 

polluting firms have incentive to truthfully reveal their abatement cost structure to the regulator.  

Montero’s (2008) mechanism is the best example of how a specific set of pollution permit 

auction rules – in his case payment combined with partial reimbursement – can be used to obtain 

the first best pollution outcome under fairly general circumstances, and with favourable equity 
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and institutional features.  

 

4.5 Further reading 

Our discussion in this chapter has followed fairly carefully the original articles on this topic.  In 

the prices versus quantities discussion our analytical approach is drawn primarily from 

Weitzman (1974), though our graphical analysis has been motivated by Adar and Griffin (1976).  

Our discussion of hybrid policies draws on many sources, but is fundamentally based on Roberts 

and Spence (1977) and extensions thereof.  Montero’s (2008) discussion of mechanism design as 

related to environmental economics is particularly useful, and we have borrowed heavily from 

his original analysis in explaining his models.   
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Exercises 

4.1 Our derivation of the Weitzman theorem has proceeded by assuming that the uncertainty in 

the abatement cost and damage functions ( and , respectively) are uncorrelated.  If we 

generalize the problem and allow COV(,)≠0, a slight different expression for  as shown 

in equation (4.17) arises.  Consider the case of correlated uncertainty to 

a. Derive an explicit expression for  in the general case.  See Weitzman, p. 485, footnote 1 

for guidance on how our derivation in the Appendix must be modified.  

b. Describe how positive or negative correlation in damages and abatement costs augments 

the purely slope-based arguments from the independence case.  

c. Stavins (1996) argues that the type of correlation we might expect to see in many 

situations will lead us to favour quantity instruments, all else equal.  Summarize his 

arguments, and comment on the extent to which you agree.   

 

4.2 Weitzman’s research has motivated several subsequent papers examining how features of 

policy design in specific contexts interact with benefit or cost uncertainty to alter the original 

model’s conclusions.  Examples include Newell and Pizer (2003), Montero (2002), and 

Quirion (2004).  Consider the following for these papers: 

a. Explain in words the generalization examined relative to Weitzman’s baseline analysis, 

and how the modelling framework is altered to accommodate the generalization.   

b. Explain how the conclusions regarding the regulator’s appropriate choice of a quantity or 

price instrument are altered by the generalization.   

c. Summarize any specific examples discussed in the papers in which the generalization is 

thought to matter for a particular policy or environmental issue.   
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Appendix 4.1  Derivation of Weitzman theorem result: 

Recall from (4.15) that  

 
1

1

( , )

( , ) ,

E

E

EV C E

EV D E





   
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 (A4.1) 

and that for the quantity instrument the regulator chooses E  such that 

 ( , ) ( , ) ,E EEV C E EV D E          (A4.2) 

and =.  Also, for subsequent use, we can obtain the variance of the marginal abatement cost 

function by  
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 (A4.3) 

Recall that for the price instrument, firms’ behaviour results in their equating the marginal 

abatement cost curve with the tax rate such that  
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      

 (A4.4) 

where the marginal abatement cost curve is from (4.14), and we have substituted the behavioural 

relationship E=E() into the equation.  Solving for E() we obtain 
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2

( , ) .E E
 

 
  

 


 (A4.5) 

Differentiating (A4.5) with respect to  leads to 

 
2

1
( , ) .E

K
      (A4.6) 

By using this expression for h(), we can write the optimal tax rate from equation (4.11) as 
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 (A4.7) 

Furthermore, we can substitute (A4.5) into the formula for the marginal damage function in 

(4.14) and take expectations to simplify the expression   
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 (A4.8) 

This, along with =allows us to simplify (A4.5) to  
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 (A4.9) 

Recall from equation (4.7) that the expected social cost from the quantity instrument is  
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Likewise the expected social cost from the price instrument is  
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 (A4.11) 

where the last step uses that fact that  and  are independent so that EV(×)=0, and EV(2)=
 

is the variance of   Taking the difference ESC
P
−ESP

Q
 matches equation (4.17). 
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Figure 4.1: Damage and Abatement Cost Curve Uncertainty 
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Figure 4.2: Welfare Loss with Steep and Flat Marginal Damage Curves 
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Figure 4.3: Illustration of Proposition 4.1 
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Figure 4.4: Illustration of the Weitzman Theorem 
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Figure 4.5: Roberts and Spence Instrument 
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Figure 4.6: Henry’s Instrument 
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Figure 4.7: Unold and Requate Instrument 
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Figure 4.8: Montero Mechanism with =0 or =1   
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Figure 4.9: Montero Mechanism for firm j 
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