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1 Introduction

Definition 1 A metric space is a set S and a metric ρ : S×S → < satisfying

1. ρ(x, y) = 0 iff x = y

2. ρ(x, y) = ρ(y, x)

3. For all x, y, z ∈ S, ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

Note. ρ(x, y) ≥ 0. Indeed, consider the 3 points x, x, y. Applying the

triangle inequality,

0 = ρ(x, x) ≤ ρ(x, y) + ρ(y, x) = 2ρ(x, y)

Example: d2 in <k, defined by

d2(x, y) =
√∑k

i=1(xi − yi)2

Definition 2 A mapping ‖ ‖ : <k → < is called a norm on the vector space

<k if

1. ‖x‖ = 0 iff x = 0

2. For all γ ∈ <, ‖γx‖ = |γ|‖x‖

3. For all x, y ∈ <k, ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Note. A norm induces the metric ‖x − y‖. Verify that this satisfies

properties 1 and 2 of a metric. For the triangle inequality, note that

‖x− y‖ = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖
(by Property 3 of the norm)

Note. ‖z‖ ≥ 0 for every z. Indeed, 3 implies that for z,−z ∈ <k,
0 = ‖z + (−z)‖ ≤ ‖z‖+ ‖(−1)z‖. By 2, this equals 2‖z‖.

Examples. ‖x‖p = (
∑k

i=1 |xi|p)1/p where p ∈ [1,∞). p = 2 is the Eu-

clidean norm which induces the Euclidean metric d2. Minkowski for triangle

inequality. p→∞⇒ Max norm.

Functions and Sup Norm

Consider the vector space bU of all bounded functions from a set U to

< (over the field of real numbers). For any function f , define its norm

‖f‖ = sup{|f(x)| : x ∈ U}
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• Claim:

d∞(f, g) = sup
x∈U
|f(x)− g(x)|

is an induced metric. (bU, d∞) is a metric space.

• For the triangle inequality, let f, g, h ∈ bU

• Take any x ∈ U . |f(x)− g(x)| =

|f(x)− h(x) + h(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)|

≤ d∞(f, h) + d∞(h, g)

• Since x is arbitrary, d∞(f, h) + d∞(h, g) is an upper bound of the set

{|f(x)− g(x)| : x ∈ U}. So its supremum

d∞(f, g) ≤ d∞(f, h) + d∞(h, g)

2 Sequences

Definition 3 A sequence (xn) ⊂ S converges to x ∈ S if for all ε > 0, there

exists a positive integer N such that n ≥ N implies ρ(xn, x) < ε.

Note:So the sequence (ρ(xn, x)) ⊂ < converges to 0, in the metric space

(<, | |).

Theorem 1 A sequence in (S, ρ) can have at most one limit.

Proof.

Suppose x, x
′

are limits of (xn). By the triangle inequality, we have for

all n, 0 ≤ ρ(x, x
′
) ≤ ρ(x, xn) + ρ(xn, x

′
)

Since the RHS tends to zero, ρ(x, x
′
) < ε for every positive ε. So ρ(x, x

′
) =

0, so x = x
′
.

Open ball B(x, ε) = {y ∈ S|ρ(x, y) < ε}
What does B(f, ε) look like if f ∈ (b[a, b], d∞)?
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Definition 4 A subset E ⊂ S is bounded if E ⊂ B(x, n) for some x ∈ S and

n ∈ N. A sequence (xn) is bounded if its range {y|y = xn for some n ∈ N}

is a bounded set.

Example 1 JS Ex3.1.3. Every convergent sequence in S is bounded.

Proof 1 Let xn → x. Choose ε > 0. Let N be such that n ≥ N implies

ρ(x, xn) < ε. Let r = max{ρ(x, x1), . . . , ρ(x, xN−1), ε}. Then (xn) ⊂ B(x, k),

for k > r.

Subsequences.

Definition 5 If (xn) is a sequence and n1 < n2 < . . . < nk < . . . is an

increasing sequence of positive integers, then (xnk
) is called a subsequence of

(xn).

Definition 6 x is a limit point of the sequence (xn) if it is the limit of some

subsequence of (xn).

Note: A limit point x has infinitely many members of (xn) ε-close to it

(for every ε > 0).

Example 2 Non-convergent sequences may nevertheless have limit points.

(xn) = (−1)n is a sequence with limit points 1,−1 but no limit.

(xn) =

 2 + (−1/n)n n = 1, 2, 5, 6, ...

−2 + (−1/n)n n = 3, 4, 7, 8,

2,−2 are the limit points of this sequence, which again has no limit.

JS Ex3.1.4. (xn) converges to x if and only if every subsequence of (xn)

does so.
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Indeed, if every subsequence converges to x, so does (xn) since it is itself a

subsequence. Conversely, suppose xn → x but that some subsequence (xnk
)

does not. So there exists ε > 0 such that for every N ∈ N, there exists k ≥ N

such that ρ(x, xnk
) ≥ ε. Thus for n = nk, n ≥ N and ρ(x, xn) ≥ ε. So xn

does not converge to x. Contradiction.

Recall the Completeness Property of the set of Real numbers: Every

set of reals bounded above has a supremum, every set of reals bounded below

has an infimum.

This follows from the way that the real numbers are constructed from

the rationals: e.g., by means of Dedekind cuts from the set of rational num-

bers, or equivalence classes of Cauchy sequences of rational numbers. Note

that the completeness property does not hold for, say, the rational num-

bers. For instance, the successive decimal expansions approximating
√

2,

{1.4, 1.41, 1.414, . . .} is bounded above (say by the rational number 1.42),

but it does not have a rational number supremum. Hence the rationals are

completed by extending them to the larger set of real numbers.

Recall the property of the supremum of a set A: for every ε > 0, there’s

an element a ∈ A s.t. a ∈ (supA − ε, supA]. If this were not true for some

ε, then supA− ε would be an upper bound of A, contradicting that supA is

the least upper bound of A. We then have

Theorem 2 Every bounded and increasing sequence of real numbers con-

verges (to its supremum).

Proof 2 Let a ≡ sup(xn). Take any ε > 0. By the above discussion, there

exists some xN ∈ (a − ε, a]. And since (xn) is an increasing sequence, we

have that for all k ≥ N , xk ∈ (a− ε, a]. So (xn)→ a.

A similar conclusion holds for decreasing bounded sequences. And:

Theorem 3 Every sequence of real numbers has a monotone subsequence.
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Proof 3 For the bounded sequence (xk), let An = {xk|k ≥ n}, n = 1, 2, ....

If any one of these sets An does not have a maximum, we can pull out an

increasing sequence. For instance, suppose A1 does not have a max. Then

let xk1 = x1. Let xk2 be the first member of the sequence (xk) that is greater

than x1, and so on.

On the other hand, if all An have maxes, then we can pull out a decreasing

subsequence. Let xk1 = max{A1}, xk2 = max{Ak1 + 1}, xk3 = max{Ak2 + 1}

and so on.

It follows from the above two theorems, that we have

Theorem 4 Bolzano-Weierstrass Theorem.

Every bounded sequence of real numbers has a convergent subsequence.

Finally, as an application to the ideas of monotone sequences, we have

Theorem 5 Cantor’s Nested Intervals theorem.

If [a1, b1] ⊇ [a2, b2] ⊇ . . . is a nested sequence of closed intervals, then

∩∞m=1[am, bm] is nonempty. Moreover, if bm − am → 0, then this intersection

is a single point.

Proof 4 Because of the nesting, a1 ≤ a2 ≤ . . . ≤ b2 ≤ b1. So, (ak) is bounded

and increasing and so has a supremum, say a; (bk) is bounded and decreasing

and has an infimum, say b; and a ≤ b. So, [a, b] ⊆ [am, bm],m = 1, 2, . . ., and

therefore lies in the intersection ∩∞m=1[am, bm]; which is therefore nonempty.

Moreover, if bm − am → 0, then by sandwiching, a = b and the intersection

is a single point.

Note. We’ve seen examples of non-convergent sequences of real numbers

with multiple limit points. If there is a largest and smallest limit point, these

are called the limit superior and limit inferior of (xn). Let’s discuss these a

6



little, starting with the alternative definition given in Stachurski, Appendix

A.

Definition 7 Let (xn) be a bounded sequence of real numbers.

lim supxn = limn→∞(supk≥n xk)

lim inf xn = limn→∞(infk≥nxk)

The set An = {xk|k ≥ n} is bounded and so has a supremum and an

infimum. Call these yn and zn respectively.

Notice that for every n,

An+1 = {xk|k ≥ n+ 1} ⊂ {xk|k ≥ n} = An

(as we are removing an element from the first set), so yn+1 ≤ yn. So (yn)

is a decreasing bounded sequence and therefore converges to its infimum.

Thus

lim supxn = inf(yn) = infn(supk≥n xk)

Similarly,

lim inf xn = sup(zn) = supn(infk≥n xk)

Note. For each n, yn and zn are the sup and inf of the same set. So

yn ≥ zn. Taking inf on the yns and sup on the zns preserves this inequality,

so

lim supxn ≥ lim inf xn.

Theorem 6 lim supxn is the largest limit point of (xn).

Proof 5 Let y = lim supxn. Since yn ↓ y, yn ≥ y, for all n. Now, yn =

sup{xk|k ≥ n}, so for each n, pick an element (calling it wn) in {xk|k ≥ n}

‘very close to’ yn. Note yn ≥ wn ≥ y, ∀n. So, since yn → y, we have

wn → y; also all wn are members of the original sequence xn. So y is indeed

a limit point of (xn). y is also the largest limit point. For suppose y
′
> y is

another limit point. Let ε = (y
′ − y)/2. So there exists N such that n ≥ N

implies yn < y
′ − ε. Since yn = sup{xk|k ≥ n}, at most a finite number of
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points (those from (x1, ..., xN−1)) can be ε-close to y
′
. Thus y

′
is not a limit

point of (xn).

Similarly, lim inf xn is the smallest limit point of (xn).

Sequences and Function Continuity

Theorem 7 A sequence (xn) in (<k, dp) converges to a point x = (x1, ..., xk) ∈

<k if and only if each coordinate sequence (xjn) converges to xj.

Remark: Thus if (xn) converges for some metric dp, p ∈ [1,∞), all coor-

dinate sequences converge in <, which therefore implies that (xn) converges

for every metric dp.

Definition 8 Let S, Y be two metric spaces, and A ⊂ S. A function f :

A → Y is continuous at a ∈ A if for every sequence (xn) converging to a,

(f(xn)) converges to f(a). f is continuous on A if this is true for all a ∈ A.

(Diagram)

Lemma 1 Let x̄ ∈ S. Define f : S → < by f(x) = ρ(x, x̄), for all x ∈ S.

Then f is continuous on S.

Proof 6 ρ(xn, x̄) ≤ ρ(xn, x) + ρ(x, x̄) by the triangle inequality (draw a dia-

gram also). So, ρ(xn, x̄)− ρ(x, x̄) ≤ ρ(xn, x). Similarly, ρ(x, x̄)− ρ(xn, x̄) ≤

ρ(xn, x). And so, |ρ(xn, x̄)− ρ(x, x̄)| ≤ ρ(xn, x). Since the RHS converges to

0, the result follows.

Second Proof. (ε − δ continuity defn). Fix any ε > 0. We want to find

δ > 0 s.t. whenever ρ(x, y) < δ, |ρ(x, x̄)− ρ(y, x̄)| < ε. Set δ = ε and notice

that

ρ(x, x̄)− ρ(y, x̄) ≤ ρ(x, y) < ε

The first inequality is the triangle inequality and the 2nd is by choice of

y. Similarly, we can show that
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ρ(y, x̄)− ρ(x, x̄) ≤ ρ(y, x) < ε

so the result follows.

Exercises

JS Exercises 3.1.5-6 can be done easily assuming we know corresponding

results for limits of sequences. For example, if an → a and bn → b then

anbn → ab. Using this we can immediately show that if f and g are continu-

ous at x, then so is fg. Because by continuity, xn → x implies f(xn)→ f(x)

and g(xn)→ g(x), so by the product of limits rule, f(xn)g(xn)→ f(x)g(x).

Exercise 3.1.7. f : S → < is upper-semicontinuous (usc) at x if for

every xn → x, lim sup f(xn) ≤ f(x); and lsc if lim inf f(xn) ≥ f(x). Sup-

pose f is usc at x. Thinking of largest and smallest limit points, note that

lim inf −f(xn) = − lim sup f(xn) ≥ −f(x), so −f is lsc at x. Suppose f

is both usc and lsc at x: so lim inf f(xn) ≥ f(x) ≥ lim sup f(xn). The

reverse inequality always holds for lim sup and lim inf. So lim inf f(xn) =

lim sup f(xn) = lim f(xn) and this equals f(x). The converse follows be-

cause if a sequence (f(xn)) is convergent, then so are all its subsequences.

3 Open, Closed, Compact Sets

Open and Closed Sets

Definition 9 x is an adherent (or contact or closure) point of E ⊂ S if for

every ε > 0, B(x, ε) contains at least one point of E.

JS Ex3.1.8. x adheres to E iff it is the limit of a sequence (xn) contained

in E.

Proof 7 If (xn) ⊂ E converges to x, then for every B(x, ε), there is some

xn ∈ E that belongs to B(x, ε); so x adheres to E. Conversely, if x adheres to

E, then every B(x, 1/n), n = 1, 2, ..., contains a point, say xn, that belongs

to E. By construction, the sequence (xn) converges to x.
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Definition 10 x is an interior point of E if B(x, ε) ⊂ E, for some ε > 0.

x is an accumulation (or limit or cluster) point of E if for every ε > 0,

B(x, ε) contains a point of E distinct from x.

Every open ball around a limit point contains an infinity of points of E.

Definition 11 A set E ⊂ S is open if all its points are interior points. A

set E is closed if it contains all its adherent points.

Theorem 8 A set F ⊂ S is closed iff for every sequence (xn) ∈ F that

converges in S, limn→∞xn ∈ F .

Proof 8 Suppose F is closed and (xn) ⊂ F is a sequence converging to x.

So by Ex.3.1.8, x adheres to F . Since F is closed, x ∈ F . Conversely,

suppose all convergent (xn) ⊂ F have limits in F . To show F is closed, take

an arbitrary adherent point of F , say x. By Ex. 3.1.8, there is a sequence

(xn) ⊂ F that converges to x. So by assumption, x ∈ F , and hence F is

closed by definition.

Theorem 9 E is open iff Ec is closed.

Proof 9 Suppose E is open, x adheres to Ec and x /∈ Ec. So x ∈ E, and so

x ∈ int(E). So for some ε > 0, B(x, ε) ⊂ E. So x does not adhere to Ec.

Contradiction. So x ∈ Ec and Ec is closed. Conversely, suppose Ec is closed

and x ∈ E. So x does not adhere to Ec; B(x, ε) does not intersect with Ec,

for some ε > 0. So B(x, ε) ⊂ E, so x ∈ int(E).

Theorem 10 Arbitrary unions and finite intersections of open sets are open.

Arbitrary intersections and finite unions of closed sets are closed.

The 2nd statement follows from the first using the preceding result and

De-Morgan’s laws. Let Gn = (−1/n, 1/n), n = 1, 2, ... be a collection of open

sets. ∩nGn = {0}, which is closed.
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Definition 12 The closure of E, cl(E), is the set of all points that adhere

to E.

JS Ex 3.1.18. cl(E) is a closed set. Also, if E ⊂ F , and F is closed, then

cl(E) ⊂ F .

Suppose x adheres to cl(E). Want to show that then x ∈ cl(E), i.e. that

x adheres to E. Since x adheres to cl(E), do this: take ε > 0, and have

a y ∈ cl(E) s.t. y ∈ B(x, ε). Since y ∈ cl(E), it adheres to E, so take

δ = ε− ρ(x, y), and a z ∈ E s.t. z ∈ B(y, δ) ⊆ B(x, ε). So, x adheres to E.

Now suppose E ⊂ F and F is closed. Suppose x adheres to E. So some

(xn) ⊂ E ⊂ F converges to x. So x adheres to F , and since F is closed,

x ∈ F .

Similarly, int(E) is the largest open set contained in E.

Open Sets and Continuity

Theorem 11 A function f : S → Y is continuous iff the preimage f−1(G)

of every open set G ⊂ Y is open in S.

Example of discontinuous function violating this definition.

Proof 10 Suppose f is continuous, G ⊂ Y is open, and x ∈ f−1(G) (so

f(x) ∈ G). Then x ∈ int(f−1(G)). For suppose not. Then we can construct

a sequence (xn) /∈ f−1(G) converging to x. So, the sequence (f(xn)) /∈ G,

and f(xn)→ f(x). So f(x) /∈ G. Contradiction.

Conversely, suppose that preimages of all open sets of Y are open. Sup-

pose that in S, (xn) → x. To show f(xn) → f(x), let B be any ε-open ball

around f(x). Since f−1(B) is open and contains x, for large enough N we

have n ≥ N implies xn ∈ f−1(B). So f(xn) ∈ B.

Theorem 12 Let f : <k → <m. f is dp-continuous iff it is dq-continuous,

for p, q ∈ [1,∞).
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Proof 11 (Sketch). dp-closed and dq-closed sets are identical, and therefore

so are dp and dq-open sets. Indeed, suppose A is dp-closed. Suppose (xn) ⊂ A

dq-converges to x. Then (xjn) converges to xj, for all coordinate sequences

j = 1, ..., k. So (xn) dp-converges to x. Since A is dp-closed, x ∈ A. So A is

dq-closed. And so on.

Note. JS Exercise 3.1.24 shows that for metrics other than dp-metrics,

however, the open and closed sets, and therefore the sets of continuous func-

tions and convergent sequences, can be quite different.

Compactness

An open cover of A is a collection {Gα} of open sets whose union contains

A. A subcover is a subset of sets from this family whose union still contains

A. We say a subcover is finite if it has a finite number of sets.

Definition 13 A set A ⊂ S is compact if every open cover of A has a finite

subcover.

Examples:

(1). (0, 1) is not compact in the metric space (<, | |). For consider the family

of open sets O = {( 1
n
, 1)|n = 1, 2, . . .}. Evidently, every x ∈ (0, 1) belongs to

one of these sets, so O is an open cover of (0, 1). However, there is no finite

subcover, because such a subcover would have a largest interval ( 1
k
, 1), and

we can find 0 < x < 1
k

for some x.

(2). Any finite subset S = {a1, . . . , aK} of a metric space is compact. Sup-

pose O is an open cover of S. So for each ai ∈ S, there is a set Ai belonging

the family O that contains it. So, (up to non-uniqueness), S ⊆ ∪Ki=1Ai; we

have a finite subcover.

(3). [0, 1] is compact in <.

For suppose not. Then there exists an open cover O such that either

[0, 1
2
] or [1

2
, 1] has no finite subcover. Call the relevant interval [a1, b1]. Then

either [a1, a1 + b1−a1
2

] or [a1 + b1−a1
2
, b1] does not have a finite subcover. Call
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the relevant set [a2, b2] and note that it’s nested within [a1, b1]. Proceeding

recursively, we get a nested sequence of closed intervals [am, bm], none of

which has a finite subcover, and with bm − am → 0. By Cantor’s nested

intervals theorem, it has a single point intersection at some y. Since y ∈ [0, 1],

there is some A ∈ O that contains it. Since A is open, there exists (y− ε, y+

ε) ⊆ A; and for m large enough, [am, bm] ⊆ (y − ε, y + ε). But then, such a

[am, bm] is covered by A, and hence has a finite subcover. Contradiction.

Compactness has some of the structure of finite sets (Efe Ok); for ex-

ample, a finite set E = {x1, . . . , xk}is bounded. Let n > max{ρ(x1, xi)|i =

2, . . . , k}. Then E ⊆ B(x1, n). For an infinite set A, we can’t necessarily

find a maximum distance as in a finite set. however, if A is compact, we

can cover the entire set with a finite number of open balls centered at some

x ∈ A; as shown below.

Theorem 13 Every compact subset of a metric space is closed and bounded.

Proof 12 Boundedness: Let A be compact. Choose some x ∈ A and consider

the following open cover of A: {B(x, n)|n ∈ N}. If {B(x, r1), ..., B(x, rk)}

is a finite subcover, then A ⊂ B(x, r), where r = max{r1, ..., rk}.

Closedness: We show (S−A) is open. Let x ∈ (S−A). So for every z ∈ A,

B(x, rz) and B(z, rz) are disjoint, where rz = 1
2
ρ(x, z). Since A is compact,

the open cover {B(z, rz)|z ∈ A} has a finite subcover {B(z1, rz1), ..., B(zk, rzk)}.

Let r = min{rz1 , ..., rzk}. Since B(x, r) does not intersect with any of the sets

in the finite subcover, it does not intersect with A. Thus B(x, r) ⊂ (S − A).

Note in the proof of closedness that we could take the minimum of the

radii because there were only a finite number of open balls due to compact-

ness.

The converse is not true in general for metric spaces, and we’ll give an

example or two later.
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Proposition 1 A closed subset A of a compact metric space S is compact.

Proof 13 Let O be an open cover of A. So O ∪ (S − A) is an open cover

of S; since A is closed. So S has a finite subcover B, which is also a finite

subcover of A ⊂ S.

While the above was the Heine-Borel way to compactness, for metric

spaces, there is a very useful alternative definition of compactness, as seen in

the following theorem. This alternative notion is called sequential compact-

ness.

Theorem 14 A subset E of a metric space S is compact iff it is sequentially

compact, i.e. every sequence in E has a subsequence that converges to a point

in E.

Proof 14 Suppose E is compact, and suppose (xm) ⊂ E is a sequence that

has no convergent subsequence with limit in E. Then, (xm) must have in-

finitely many distinct points (else, some point will repeat an infinite number

of times, forming a convergent subsequence).

Around each distinct point xi, there exists an open ball B(xi, εi) that does

not contain any other point xj; (for, if every open ball around xi had another

point xj from (xm), then it would be a limit point of (xm)).

So, {B(xi, εi), i = 1, 2, . . .} is an open cover of (xm).

Now, since (xm) does not have a limit point, it’s a closed set; and since

it’s a subset of the compact set E, it’s compact itself. So it has a finite

subcover from {B(xi, εi), i = 1, 2, . . .}; but then, (xm) must have only finitely

many distinct points. Contradiction.

Conversely, suppose E is sequentially compact, and suppose {Uα|α ∈ A}

is an open cover of E.

(i). Note first that E is totally bounded, i.e., for every ε > 0, E can be covered

with finitely many open ε-balls. For if this were not so, we could start with
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some x1 ∈ E, pick x2 ∈ E − B(x1, ε), pick x3 ∈ E − (B(x1, ε) ∪ B(x2, ε)),

and so on. The resulting sequence (xm) ⊆ E would have every pair of points

at a distance of at least ε, and so not have any convergent subsequence.

(ii). Now, there exists r > 0 such that for every point x ∈ E, B(x, r) ⊆ Uα,

for some α ∈ A. For if this were not the case, then for every 1/m, we would

have a xm ∈ E s.t. B(xm, 1/m) is not a subset of any Uα. Since (xm) ⊆ E, it

has a convergent subsequence, call it (zk), converging to z ∈ E. Since z ∈ Uα,

for some α, and this is open, B(z, ε) ⊆ Uα for some ε > 0. For k sufficiently

large, zk is very close to z, and we can get B(zk,
ε
2
) ⊆ B(z, ε) ⊆ Uα (why?).

Now zk = xm for some m, and for k large enough, 1/m < ε/2. But then

(B(xm, 1/m) ⊆ Uα. Contradiction.

(iii). For the r in Step (ii), E is covered by a finite number of r-balls. So

there exist x1, . . . , xK in E s.t. E ⊆ ∪Ki=1B(xi, r). And since for each i,

B(xi, r) ⊆ Ui for some i ∈ A; so {Ui|i = 1, . . . , K} is a finite subcover of E.

From the Bolzano-Weierstrass theorem, it follows that [a, b] is compact.

Because, every sequence in [a, b] is a bounded sequence, hence has a limit

point in [a, b]. By the same token, the rectangle [a, b]k is compact in <k.
Indeed, take any sequence (xm) ⊂ [a, b]k. Then the coordinate sequence (x1m)

is bounded in [a, b], hence the coordinate sequence from some subsequence

(x1m1
) converges to some x1 in [a, b]. The second coordinate sequence (x2m1

)

from this sequence is bounded in [a, b], hence has a subsequence converging

to some x2. And so forth; so some subsequence converges to x ∈ [a, b]k. We

can now prove:

Theorem 15 Suppose A ⊂ <k is closed and bounded. Then A is compact.

Proof 15 For some x ∈ A and some ε > 0 we have A ⊂ B(x, ε), since

A is bounded. Choose some a < min{xj − ε|j = 1, . . . , k} and some b >
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max{xj + ε|j = 1, . . . , k}. Then A ⊂ B(x, ε) ⊂ [a, b]k. Since A is a closed

subset of the compact set [a, b]k, it is compact.

For an arbitrary metric space, a closed and bounded subset may not

be compact. As an example, consider the space C[0, 1] of all real-valued

continuous functions defined on [0, 1]. Consider the closed unit ball B̄(0, 1)

or B̄ for short, in this space. This is the subset of all functions f with

||f || ≤ 1. Where ||f || = sup{|f(x)| : x ∈ [0, 1]}.

In this space, B̄ is closed, bounded, but not compact. Clearly, B̄(0, 1) ⊆
B(0, 2), so it’s bounded. To see closedness, suppose the function f is an

adherent point of B̄. So, for an open ball B(f, ε), there is a function g ∈ B̄
that lies in B(f, ε). So, ||f − g|| < ε. So,

||f || = ||f − g + g|| ≤ ||f − g||+ ||g|| < ε+ 1

(where the first inequality is the triangle inequality; also, ||g|| ≤ 1 as

g ∈ B̄). Since this is true for every ε > 0, we have ||f || ≤ 1, so f ∈ B̄. So,

B̄ is closed.

To show B̄ is not compact, consider the sequence (fn) ⊆ B̄ defined by

fn(x) = xn, n = 1, 2, . . .. No function f ∈ C[0, 1] can be the limit of any

subsequence of (fn). Suppose f is such a limit, and let ε = 1/4, and let

(fnk
) be a subsequence. So, for each k = 1, 2, ..., fnk

(x) = xn(k), where

n() is an increasing function. So, for 0 ≤ x < 1, fnk
(x) → 0. And for

x = 1, fnk
(x) = 1. Suppose f(1) > 1/2. By continuity, for high enough k,

||fnk
− f || ≥ 1/2. If f(1) ≤ 1/2, the same conclusion holds. (Picture). So f

is not a limit.

In fact, for C[a, b], the problem is that it’s not equicontinuous. The Arzela-

Ascoli theorem says that a subset E of C[a, b] is compact if and only if it is

closed, bounded and equicontinuous. (See for example, Efe Ok).

3.1 Weierstrass’ Theorem

Compact Sets and Optimization
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You’ve seen the theorem below proved the Bolzano-Weierstrass way, so

see the Heine-Borel argument below.

Theorem 16 (Weierstrass) Let f : S → Y , where S and Y are metric

spaces and f is continuous. If K ⊂ S is compact, then so is f(K).

Proof 16 Suppose {Gα} is an open cover of f(K). So {f−1(Gα)} is an open

cover of K. (Because f−1(∪Gα) = ∪f−1(Gα); ‘open’ follows from continu-

ity). Since K is compact, there is a finite subcover {f−1(G1), ..., f
−1(Gk)}.

So {G1, ..., Gk} is a finite subcover of f(K).

Since we’ve done the corollary which we use all the time, that is, if Y

above is the set < of real numbers, then f has a maximum and a minimum

on K, I will forego that discussion here.

4 Complete Metric Spaces

Definition 14 (xn) is a Cauchy sequence in S if for every ε > 0, there exists

N such that n,m ≥ N implies ρ(xn, xm) < ε

Every convergent sequence is obviously Cauchy (since ρ(xn, xm) ≤ ρ(xn, x)+

ρ(xm, x), where x = limxn). But Cauchy sequences may not converge in a

metric space. For instance, in the metric space (Q, | |), Cauchy sequences

of rationals need not converge. (Consider for instance the Cauchy sequence

(1.4, 1.41, 1.414, ...) does not converge in Q). Hence the need to “complete”

the space to include the irrationals, which are all limits of rational Cauchy

sequences.

Definition 15 A metric space is complete if every Cauchy sequence in it

converges to a point in the metric space.

So (<, | |) is a complete metric space.

17



To labor the point, note that a Cauchy sequence (xm) is bounded. (Let

ε > 0, then there is an N s.t. (xm) ⊂ B(xN , r), where

r = max{ε, ρ(x1, xN), . . . , ρ(xN−1, xN)}).
So every Cauchy sequence (xm) in <, being bounded, has a convergent

subsequence (xmk
) converging to a point x ∈ < (by the B-W theorem). But

then, (xm)→ x. Indeed

ρ(xm, x) ≤ ρ(xm, xmk
) + ρ(xmk

, x)

and the RHS becomes as small as we want; the first term due to Cauchy-

ness.

Theorem 17 (xn) is Cauchy in (<k, dp) iff all its coordinate sequences are

Cauchy in (<, | |).

Proof 17 (Sketch). Suppose all coordinate sequences (xjn)are Cauchy, and

let ε > 0. Let N be such that for all the coordinate sequences, n,m ≥ N

implies |xjn − xjm| < (ε/k1/p). So (
∑k

j=1 |xjn − xjm|p)1/p < ε. And so forth.

Since < is complete, it follows from above that so is <k.

Convergence of Functions, Continuity.

Definition 16 A sequence of real-valued functions (fn) defined on U con-

verges pointwise to a function f if for all x ∈ U , |fn(x)− f(x)| → 0.

Continuity is not necessarily preserved by pointwise convergence; e.g.,

(fn) defined on the domain [0, 1] by fn(x) = xn, for all x and n, converges to

the f defined by f(x) = 0 for x ∈ [0, 1) and f(1) = 1, which is discontinuous

at 1. We need uniform (d∞ or sup norm) convergence for this.

Theorem 18 Let (fn) be real-valued continuous functions on U , and d∞(fn, f)→

0. Then f is continuous on U .
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Proof 18 Let ε > 0, and let (xk)→ x̄ in U . So for some N , n ≥ N implies

|fn(x) − f(x)| < (1/3)ε, for all x ∈ U , by sup norm convergence of (fn) to

f . And for some K, k ≥ K implies |fn(xk)− fn(x̄)| < (1/3)ε, by continuity

of fn. So for k ≥ max{N,K}, by the triangle inequality,

|f(xk)− f(x̄)| ≤

|f(xk)− fn(xk)|+ |fn(xk)− fn(x̄)|+ |fn(x̄)− f(x̄)|

< ε

Theorem 19 The metric space (bU, d∞) is complete, for any domain U of

functions.

Proof. Let (fn) be a Cauchy sequence in bU . So for each x ∈ U ,

(fn(x)) is a Cauchy sequence of real numbers, and so converges to some

real number: call this f(x), so we have defined a function with pointwise

convergence. Then f ∈ bU . Indeed, take any ε > 0, so for n ≥ N , some N ,

|f(x) − fn(x)| < ε. Take any such n. Since fn ∈ bU , |fn(x)| < K for some

K > 0.

So, |f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < ε+K.

Second, we show (fn) d∞-converges to f . Take any ε > 0. By Cauchyness,

there exists N s.t. n ≥ N implies d∞(fn, fN) < ε/2.

Therefore also for every x ∈ U , |fn(x)−fN(x)| ≤ d∞(fn, fN) < ε/2. Since

|fn(x)− fN(x)| → |f(x)− fN(x)| as n→∞, we have |f(x)− fN(x)| ≤ ε/2.

This is true for all x, so d∞(f, fN) ≤ ε/2.

So we have that for n ≥ N ,

d∞(f, fn) ≤ d∞(f, fN) + d∞(fn, fN) < ε

Note. (i) The continuous functions in (bU, d∞) are a closed subset and

therefore form a complete metric space (bcU, d∞).
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(ii). The sup norm plays a key role in the space being complete here.

By way of a counterexample, the space C[a, b] with the L2 norm, ||g|| =(∫ b
a
|g(x)|2dx

)1/2
is not complete. As an aside which you can ignore, note

that the L2 norm still has the virtue that it is induced by an inner product,

namely 〈f, g〉 =
(∫ b

a
|f(x)g(x)|dx

)1/2
; whereas, the sup norm is not induced

by any inner product.

4.1 Contraction Mapping Theorem

Definition 17 Let (S, ρ) be a metric space and T : S → S. T is nonex-

pansive if ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ S. T is a strict contraction if

ρ(Tx, Ty) < ρ(x, y) whenever x 6= y. T is a (uniformly strict) contraction

with modulus λ if λ < 1 and for all x, y ∈ S, ρ(Tx, Ty) ≤ λρ(x, y).

Note: 1. Nonexpansiveness itself is sufficient for continuity. If (xn)→ x,

ρ(xn, x) → 0. Since ρ(Txn, Tx) ≤ ρ(xn, x), it tends to 0 as well, so Txn →
Tx.

2. If T is a strict contraction, it has at most 1 fixed point. Suppose x and

y are fixed points. So ρ(Tx, x) = ρ(Ty, y) = 0. By the triangle inequality,

ρ(x, y) ≤ ρ(x, Tx) + ρ(Tx, Ty) + ρ(Ty, y) = ρ(Tx, Ty).

On the other hand, contraction implies ρ(Tx, Ty) < ρ(x, y) if x 6= y. So

x = y.

Examples. Talk about successive approximations.

Example 1. f : [0, 1]→ [0, 1] defined by f(x) = a + bx, where 0 ≤ a ≤ 1

and |b| ≤ 1. f is nonexpansive; and a uniformly strict contraction if |b| < 1.

Example 2. f : [1,∞) → [1,∞) defined by f(x) = x + 1
x
, ∀x ∈ [1,∞).

So,

f(x)− f(y) = x− y +
1

x
− 1

y
= (x− y)(1− 1

xy
)

.

So for all x 6= y, |f(x)−f(y)| < |x−y|, but f is not uniformly contracting,

and in this example has no fixed point.
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Theorem 20 (Banach) If (S, ρ) is a complete metric space and T a con-

traction with modulus λ, T has exactly one fixed point.

Proof 19 Let x0 ∈ S. Define (xn) by xn = T nx0, where T n operates with T

n successive times. (xn) is Cauchy. Indeed, let m ≥ n.

ρ(xn, xm) ≤ λρ(xn−1, xm−1) ≤ . . . ≤

λnρ(x0, xm−n) = λnρ(x0, T
m−nx0)

By the triangle inequality,

ρ(x0, xm−n) ≤ ρ(x0, x1) + . . .+ ρ(xm−n−1, xm−n) ≤

ρ(x0, x1)[1 + λ+ . . .+ λm−n−1] ≤ 1
1−λρ(x0, x1)

So ρ(xn, xm) ≤ λn

1−λρ(x0, x1), which can be made arbitrarily close to 0.

Since (xn) is Cauchy and S is complete, xn → x ∈ S.

x is a fixed point of T . Indeed, by continuity of T , xn → x implies

Txn → Tx. On the other hand, Txn = T (T nx0) = xn+1, which clearly tends

to x. Since (Txn) has a single limit, Tx = x. Uniqueness follows since T is

a strict contraction.

4.2 Blackwell’s Sufficient Conditions

Theorem 21 (Blackwell). Let M ⊂ bU s.t. u ∈ M and a ∈ [0,∞) ⇒

u + a ∈ M (where u + a is the function defined by u(x) + a,∀x ∈ U). Let

T : M → M be an operator satisfying (i) Monotonicity: u ≤ v ⇒ Tu ≤ Tv,

and (ii) Discounting: There exists λ ∈ [0, 1) s.t. ∀u ∈ M and a ∈ [0,∞),

T (u+ a) ≤ Tu+ λa. Then T is a uniformly strict contraction with modulus

λ on the metric space (M,d∞).

Proof of Blackwell’s theorem. Interpret the inequalities as holding

pointwise for all x ∈ U .

u(x) = v(x) + u(x)− v(x) ≤ v(x) + |u(x)− v(x)| ≤ v(x) + ||u− v||∞.

Since T is monotone, applying it to both sides we have
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Tu ≤ T (v + ||u− v||∞) ≤ Tv + λ||u− v||∞.

The last inequality is due to the discounting property of T .

Thus Tu− Tv ≤ λ||u− v||∞.

Reversing the roles of u and v, we get

Tv − Tu ≤ λ||u− v||∞.

Combining the two, |Tu− Tv| ≤ λ||u− v||∞.

Since this inequality holds when the left hand is evaluated at arbitrary

x ∈ U , it holds for the sup. Thus

||Tu− Tv||∞ ≤ λ||u− v||∞. That is, T is a uniformly strict contraction.

4.3 Correspondences and the Maximum Theorem

At present, notes on this topic are not written. I will follow Section 3.3 of

Stokey and Lucas for this part.
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