Course 005

Midterm exam 1: Answer Key

Question 1

Discussed in class

Question 2a

Let q_{i} be the quantity produced by firm F_{i}, where $i=0,1,2,3 \ldots, n$. We solve for SPNE using backward induction. After F_{0} chooses q_{0}, followers' choice of $\left(q_{1} \ldots, q_{n}\right)$ must be a Nash equilibrium. That is given q_{0} and q_{-i}, q_{i} must be best response for Firm i.
Profit of Firm i is denoted by π_{i}.

$$
\begin{equation*}
\pi_{i}=(1-q-c) q_{i}=\left(1-q_{0}-\sum_{k=1}^{n} q_{k}-c\right) q_{i} \tag{1}
\end{equation*}
$$

Differentiating w.r.t q_{i}, FOC for i-th firm, we get

$$
\begin{equation*}
1-q_{0}-\sum_{k=1}^{n} q_{k}-c=q_{i} \tag{2-i}
\end{equation*}
$$

Solving Equation $(2-1)$ to $(2-n)$, we obtain,

$$
\begin{equation*}
q_{i}^{*}\left(q_{0}\right)=\frac{1-q_{0}-c}{n+1} \tag{2}
\end{equation*}
$$

Next, we focus on the choice of q_{0} by F_{0} at the beginning of the game. Note F_{0} takes into account reaction function of followers while maximizing its profit function.

$$
\begin{equation*}
\pi_{0}=(1-q-c) q_{0}=\left[1-q_{0}-n\left(\frac{1-q_{0}-c}{n+1}\right)\right] q_{0} \tag{3}
\end{equation*}
$$

Differentiating w.r.t q_{0} and rearranging we get, $q_{0}^{*}=\frac{1-c}{2}$.
SPNE strategies are: $q_{0}^{*}=\frac{1-c}{2}$ and $q_{i}^{*}\left(q_{0}\right)=\frac{1-q_{0}-c}{n+1}$
[Note: Strategies must be properly specified. In the final examination marks will be deducted for such mistakes.]

Question 2b and 2c

Consider the following strategies,
$F_{0}: \hat{q}_{0}=\frac{1-c}{n+2}$
(For all $i=1, \ldots, n) F_{i}: q_{i}\left(\hat{q}_{0}\right)=\frac{1-c}{n+2}$, otherwise for all $q_{0} \neq \hat{q}_{0}, q_{i}\left(q_{0}\right)=$ $\frac{1-c}{n}$.
Given F_{0} 's choice, $\hat{q}_{0}=\frac{1-c}{n+2}$, all followers are playing Nash equilibrium strategy because from Equation (2), $q_{i}^{*}\left(\hat{q}_{0}\right)=\frac{1-c}{n+2}$.
Given strategies of the followers, $q_{1}\left(q_{0}\right), \ldots, q_{n}\left(q_{0}\right), F_{0}$ earns zero profit at $q_{0} \neq \hat{q}_{0}$ and earns positive profit at \hat{q}_{0}.
Thus the proposed strategies are mutual best response and hence is a Nash equilibrium.
However, this is not a SPNE because at subgames where $q_{0} \neq \hat{q}_{0}$, followers are not playing Nash equilibrium response (given by Equation (2)).

Question 3

The game comprises of 2 stages. In the second stage, at any history, all present employers decide to hire the second candidate because $0 \leq v_{2} \leq 10$ and payoff from not hiring is 0

In the first stage, if both employers decide to employ candidate 1 , then they hire her with probability 0.5 . In this case, the employer who loses the toss ends up hiring candidate 2 in the next period. Therefore, the expected payoff for each employer when both decide to hire in stage 1 is $0.5 v_{1}+0.5 \mathbb{E}\left[v_{2}\right]$. If one employer decides to hire then her payoff is v_{1} and that of the other employer is $\mathbb{E}\left[v_{2}\right]$. Lastly, if both do not hire in the first stage then their expected payoff is $0.5 \mathbb{E}\left[v_{2}\right]$, each.

Notice that $\mathbb{E}\left[v_{2}\right]=5$. The first stage game can be expressed in the following way.

	Employer 2			
		Hire	Not hire	
Employer 1	Hire	$0.5 v_{1}+0.5 \mathbb{E}\left[v_{2}\right], 0.5 v_{1}+0.5 \mathbb{E}\left[v_{2}\right]$	$v_{1}, \mathbb{E}\left[v_{2}\right]$	
	Not hire	$\mathbb{E}\left[v_{2}\right], v_{1}$	$0.5 \mathbb{E}\left[v_{2}\right], 0.5 \mathbb{E}\left[v_{2}\right]$	

There are 4 different NE of the first stage game, depending on the value of v_{1}.

- If $v_{1} \geq 5$, both employers decide to hire
- If $2.5 \leq v_{1} \leq 5$, then one employer hires and the other does not
- If $v_{1}<2.5$, both employers do not hire

Thus SPNE strategies are:
Employer i : (Stage 1) Hire only if $v_{1} \geq 2.5$, (Stage 2, at every history) Hire irrespective of v_{2}
Employer j : (Stage 1) Hire only if $v_{1} \geq 5$, (Stage 2, at every history) Hire irrespective of v_{2}

