Market Equilibrium Price: Existence, Properties and Consequences

Ram Singh

Lecture 5

September 26, 2017
Today, we will discuss the following issues:

- How does the Adam Smith’s *Invisible Hand* work?
- Is increase in Prices bad?
- Do some people want increase in prices?
- If yes, who would want an increase in prices and of what type?
- Does increase in prices have distributive consequences?
Individual UMP: Some Features I

Notations:

- \(\mathbf{p} = (p_1, \ldots, p_M) \) is a \(M \)-component vector in \(\mathbb{R}^M \).
- If \(\mathbf{p} = (p_1, \ldots, p_M) \in \mathbb{R}^{M}_{++} \), then \(p_j > 0 \) for all \(j = 1, \ldots, M \), i.e.,
 \[
 (p_1, \ldots, p_M) > (0, \ldots, 0).
 \]
- If \(\mathbf{p} = (p_1, \ldots, p_M) \in \mathbb{R}^M_{+} \), then \(p_j \geq 0 \) for all \(j \in \{1, \ldots, M\} \) and \(p_j > 0 \) for some \(j \in \{1, \ldots, M\} \), i.e.,
 \[
 (p_1, \ldots, p_M) \geq (0, \ldots, 0) \text{ and } (p_1, \ldots, p_M) \neq (0, \ldots, 0).
 \]
- Let \(\mathbf{x} = (x_1, \ldots, x_M) \) and \(\mathbf{x}' = (x'_1, \ldots, x'_M) \). If \(\mathbf{x}' \geq \mathbf{x} \), then \(x'_j \geq x_j \) for all \(j \in \{1, \ldots, M\} \) and \(x'_j > x_j \) for some \(j \in \{1, \ldots, M\} \).
- Let \(\mathbf{x} = (x_1, \ldots, x_M) \) and \(\mathbf{x}' = (x'_1, \ldots, x'_M) \). If \(\mathbf{x}' > \mathbf{x} \), then \(x'_j > x_j \) for all \(j \in \{1, \ldots, M\} \).
Individual UMP: Some Features II

Take a price vector \(p = (p_1, \ldots, p_M) \in \mathbb{R}_+^M \). That is, \((p_1, \ldots, p_M) > (0, \ldots, 0)\). The consumer \(i \)'s OP (UMP) is to solves:

\[
\max_{x \in \mathbb{R}_+^J} u^i(x) \quad \text{s.t.} \quad p.x \leq p.e^i
\]

Definition

\(u^i \) is strongly increasing if for any two bundles \(x \) and \(x' \)

\[
x' \geq x \Rightarrow u^i(x') > u^i(x).
\]

Assumption

For all \(i \in I \), \(u^i \) is continuous, strongly increasing, and strictly quasi-concave on \(\mathbb{R}_+^M \)
In view of monotonicity, for given $p = (p_1, \ldots, p_M) \gg (0, \ldots, 0)$, consumer i solves:

$$\max_{x \in \mathbb{R}_+^M} u^i(x) \quad s.t. \quad p.x = p.e_i$$

(1)

Theorem

*Under the above assumptions on $u^i(.)$, for every $(p_1, \ldots, p_M) \gg (0, \ldots, 0)$, (1) has a unique solution, say $x^i(p, p.e_i)$.***

Note:

- Existence follows from Monotonicity and Boundedness of the Budget set
- Uniqueness follows from ‘strictly quasi-concavity’
Note:

- $x^i(p, p.e^i)$ is the (Marshallian) Demand Function for individual i.

For each $i = 1, \ldots, N$,

$$x^i(p, p.e^i) : \mathbb{R}^M_+ \rightarrow \mathbb{R}^M_+;$$

$$x^i(p, p.e^i) = (x^i_1(p, p.e^i), \ldots, x^i_j(p, p.e^i), \ldots, x^i_M(p, p.e^i)).$$

- In general, demand for jth good depends on price of kth good, $k = 1, \ldots, M$

- Demand depend for jth good depends on price of kth good relative to the other prices
Theorem

Under the above assumptions on $u^i(.)$, for every $(p_1, \ldots, p_M) > (0, \ldots, 0)$,

- $x^i(p, p.e^i)$ is continuous in p over \mathbb{R}^M_{++}.
- For all $i = 1, 2, \ldots, N$, we have: $x^i(tp) = x^i(p)$, for all $t > 0$. That is, demand of each good j by individual i satisfies the following property:

 $$x^i_j(tp) = x^i_j(p) \text{ for all } t > 0.$$

Question

Given that $u^i(.)$ is strongly increasing,

- is $x^i(p)$ continuous over \mathbb{R}^M_+?
- is the demand function $x^i_j(p)$ defined at $p_j = 0$?

Is a Cobb-Douglas utility function strongly increasing over \mathbb{R}^M_+?
Excess Demand Function I

Definition
The excess demand for jth good by the ith individual is given by:

$$z^i_j(p) = x^i_j(p, p.e^i) - e^i_j.$$

The aggregate excess demand for jth good is given by:

$$z_j(p) = \sum_{i=1}^{N} x^i_j(p, p.e^i) - \sum_{i=1}^{N} e^i_j.$$

So, Aggregate Excess Demand Function is a vector-valued function:

$$z(p) = (z_1(p), ..., z_j(p), ..., z_M(p)).$$
Excess Demand Function II

Theorem

Under the above assumptions on $u_i(\cdot)$, for any $p \gg 0$,

- $z(\cdot)$ is continuous in p
- $z(tp) = z(p)$, for all $t > 0$
- $p.z(p) = 0$. (the Walras’ Law)

For any given price vector p, the individual UMP gives us

$$p.x^i(p, p.e^i) - p.e^i = 0, \text{ i.e.},$$

$$\sum_{j=1}^{M} p_jx_j^i(p, p.e^i) - \sum_{j=1}^{M} p_je_j^i = 0, \text{ i.e.},$$

$$\sum_{j=1}^{M} p_j[x_j^i(p, p.e^i) - e_j^i] = 0.$$
Excess Demand Function III

This gives:

\[
\begin{align*}
\sum_{i=1}^{N} \sum_{j=1}^{M} p_j [x_j^i(p, p.e^i) - e_j^i] &= 0, \text{i.e.,} \\
\sum_{j=1}^{M} \sum_{i=1}^{N} p_j [x_j^i(p, p.e^i) - e_j^i] &= 0, \text{i.e.,} \\
\sum_{j=1}^{M} p_j \left[\sum_{i=1}^{N} x_j^i(p, p.e^i) - \sum_{i=1}^{N} e_j^i \right] &= 0
\end{align*}
\]

That is,

\[
\begin{align*}
\sum_{j=1}^{M} p_j z_j(p) &= 0, \text{i.e.,} \\
p.z(p) &= 0
\end{align*}
\]
Excess Demand Function IV

So,

\[p_1 z_1(p) + p_2 z_2(p) + \ldots + p_{j-1} z_{j-1}(p) + p_{j+1} z_{j+1}(p) + \ldots + p_M z_M(p) = -p_j z_j(p) \]

For a price vector \(p \gg 0 \),

- if \(z_k(p) = 0 \) for all \(k \neq j \), then \(z_j(p) = 0 \)
- For two goods case
 - \(p_1 z_1(p) + p_2 z_2(p) = 0 \), i.e.,
 \[p_1 z_1(p) = -p_2 z_2(p). \]
 - Therefore,
 \[z_1(p) = 0 \Rightarrow z_2(p) = 0 \]
 \[z_1(p) > 0 \Rightarrow z_2(p) < 0. \]
Walrasian Equilibrium

Definition
Walrasian Equilibrium Price: A price vector \(p^* \) is equilibrium price vector, if for all \(j = 1, \ldots, J \),

\[
z_j(p^*) = \sum_{i=1}^{N} x_{ij}(p^*, p^*, e^i) - \sum_{i=1}^{N} e_j = 0, \text{ i.e., if } z(p^*) = 0 = (0, \ldots, 0).
\]

Proposition
If \(p^* \) is equilibrium price vector, then \(p' = tp^* \), \(t > 0 \), is also an equilibrium price vector

If \(p^* \) is equilibrium price vector, then \(p' \neq tp^* \), \(t > 0 \), may or may not be an equilibrium price vector
Two goods: food and cloth

Let \((p_f, p_c)\) be the price vector.

We can work with \(p = (\frac{p_f}{p_c}, 1) = (p, 1)\). Since, we know that for all \(t > 0\):

\[z(tp) = z(p) \]

Therefore, we have \(p_f z_f(p) + p_c z_c(p) = 0\), i.e.,

\[p z_f(p) + z_c(p) = 0. \]

Assume:

- \(z_i(p)\) is continuous for all \(p \gg 0\), i.e., for all \(p > 0\).
Note

- When utility function is monotonic, \(x_f(p) \) will explode as \(p_f = p \rightarrow 0 \).
 Therefore,

- there exists small \(p = \epsilon > 0 \) s.t. \(z_f(p, 1) > 0 \) and \(z_c(p, 1) < 0 \) (Why?).

- there exists another \(p' > \frac{1}{\epsilon} \) s.t. \(z_f(p', 1) < 0 \) and \(z_c(p, 1) > 0 \). (Why?).

Therefore, for a two goods case we have:

- There is a value of \(p \) such that \(z_f(p, 1) = 0 \) and \(z_c(p, 1) = 0 \)

- That is, there exists a WE price vector.

In general, Equilibrium price is determined by *Tatonnement* process