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[This note is excerpted from an article on Weitzman for general economists. It describes 
some of the technical features of fat tailed distributions. The longer piece is forthcoming in 
the Review of Environmental and Economic Policy.] 
 
 
 
The Economic Importance of Tail Events 

 From time to time, something occurs which is outside the range of what is 
normally expected. For reasons that will soon become clear, I call this a tail event. 
Some tail events are unremarkable, such as a bogus email about a large inheritance 
that awaits you in Nigeria. Others may change the course of history. Momentous tail 
events include the detonation of the first atomic weapon over Hiroshima in 1945, the 
sharp rise in oil prices in 1973, the 23 percent fall in stock prices in October 19, 1987, 
the destruction of the World Trade Towers in 2001, and the meltdown of the world 
financial system in 2007-08. A tail event is an outcome which, from the perspective 
of the frequency of historical events or perhaps only from intuition, should happen 
only once in a thousand or million or centillion years.  

 Tail events are more than statistical curiosities. In some cases, they may be so 
important that they dominate the way we think about our options and our 
strategies. Obviously, tail events dominate thinking about nuclear weapons. Less 
obvious is how to deal with tail events in economics. One example of how tail risk 
has changed economic policy is in the area of finance. In response to the meltdown 
of the banking system in 2007-2008, the theoretical approach to bank regulation has 
moved toward containing “systemic risk” rather than individual bank risk. 

  The Problem of Fat Tails 

 Low-probability, high-consequence events can dominate the impacts and 
societal concerns for many issues, of which climate change is a signal example. This 
is the problem known as “fat tails.”  

 To illustrate the problem of fat tails, it is helpful to first picture a probability 
distribution such as the common “bell curve” or normal distribution. The normal 
distribution has most observations clustering around the center, with few showing 
highly divergent results. Take the height of American women as an example. This 
variable has close to a normal distribution with a mean of 64 inches and a standard 
deviation of 3 inches. Based on the properties of a normal distribution, 95 percent of 
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American women will be between 58 and 70 inches tall. How likely is it that you will 
observe a 11-foot-tall woman? This is about 23 standard deviations from the mean, 
which is an exceedingly small number for a normal distribution (about 10-230). 
Indeed, the world’s tallest woman is reported to be about 8 feet tall. 

 Other probability distributions have the property that from time to time a very 
unlikely looking event occurs. When this is the case, we say that we have witnessed 
a “tail event” and that the tail of the distribution is “fat” rather than medium as in 
the case of the bell curve. 

  “Multi-Sigma Events” 

 People sometimes refer to “four-sigma” or “six-sigma” events. These are 
shorthand terms for how many standard deviations from the average something is. 
Returning to women’s height, if you see a woman who is 6 foot tall, that is a three-
sigma event.  For example, in a normal distribution, a three-sigma positive shock (or 
a shock three standard deviations above the mean) will occur about once every 200 
observations. So, this suggests that only 1 in 200 women will be taller than 6 feet. 

 We can examine daily changes in stock prices to illustrate this point. Prices on 
U.S. stock markets fell approximately 23 percent on October 19, 1987. An estimate of 
the daily standard deviation of price change over the 1950-1986 period shows a 
standard deviation of 1 percent. If this were a normal distribution, then we would 
see a 5 percent change in prices once every 14,000 years and a 7.2-sigma change 
about once in the life of the universe. However, 23-sigma events, like 11-foot people, 
simply do not occur for a normal distribution. 

 Yet, these large deviations occur much more frequently than would be 
predicted by the normal distribution. An interesting example would be the returns 
on the U.S. stock market. I have calculated the monthly returns for stock prices for 
the 140-year period from 1871 to 2010. As shown in Table 1, the actual maximum 
and minimum increases are much larger than would be found with a normal 
distribution. The maximum is a “10 sigma event,” which would almost never 
happen with a normal distribution (probability less than one day in the life of the 
universe). So people who think that financial markets follow the bell curve will from 
time to time find themselves very surprised. 
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Table 1. Comparison of normal and actual distribution of stock price changes   

This table displays the phenomenon of fat tails for the stock market. I looked at 140 years of 
stock price changes measured in percent per month (from 1871 to 2010). I then took a 
series with the same mean and standard deviation. The largest actual increase in the sample 
was 40.7 percent, whereas the largest with a normal distribution would be 14.3 percent. 
Similar numbers are seen for declines as well. (Source: Robert Shiller and DRI data base. 
Increases are logarithmic.) 

_____________ 

 It has been known for many years that there are large deviations from the 
normal or bell-curve distribution for the stock market as well as for many other 
phenomena. Statisticians have developed both probability distributions that have fat 
tails and techniques to estimate these other distributions. A particularly interesting 
probability distribution that may have fat tails is one that is known as the “power 
law.” This refers to a distribution in which the probability is proportional to a value 
to a power or exponent. Power law distributions were introduced into economics by 
Benoit Mandelbrot (1963), and are widely used in the natural and social sciences. 
One example of this is the power law for earthquakes, the sizes of cities and firms, 
solar flares, moon craters, wars, incomes, wealth, and commodity prices.   

The Element of Surprise 

 One way to think about tail events is to note that you can be extremely 
surprised by an outcome when a process has fat tails. This “surprise” can be 
measured by asking how deviant of an observation might turn up when you have 
many observations. For example, suppose that you have looked at housing prices for 
50 years and observe that they have never declined. So you place your bets on 
housing prices continuing to rise. But then you get a draw from a fat-tailed 
distribution and housing prices fall – not just a little, but 20 or 40 percent. 

Largest increase in 140 years
Actual 40.7
Normal distribution 14.3

Largest decrease in 140 years
Actual ‐30.8
Normal distribution ‐13.7
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 Now suppose you were in the oil market in the early 1970s. Suppose further 
you were a trader who eschewed any economic theories and just looked at historical 
data (which is not an absurd approach given the unpredictability of oil prices). Oil 
prices had been pretty stable, and the “sigma” was about 5 percent on a monthly 
basis. But then, in 1973, we had, by historical standards, a 37-sigma event (see Figure 
1, which also shows the high-sigma stock-market and oil-price surprises events on a 
monthly basis). No wonder many people thought the economic world as we knew it 
was coming to an end in 1973. If we could have a 37-sigma event, then almost 
nothing consistent with the laws of nature could be ruled out if we think the 
distribution is normal.  

 Enter fat tailed distributions. 

 There has been much historical and statistical research on “surprises” or fat tails 
over many years. The conclusion of this research – on oil prices, stock prices, 
earthquake size, war fatalities, and many other phenomena – is that we were 
surprised for the wrong reasons. We might have thought that the spikes in Figure 1 
were near-zero-probability events. They were not. Rather, we were surprised 
because the distributions were not normal. That is, they had fat tails, which means 
that the probability of the “way out” events was much greater than would be 
predicted by the normal distribution.  

 How Can We Know Which Distributions Are Fat-Tailed? 

 This research solved one problem but raised another. The new problem is, 
which are the fat-tailed distributions and which are the thin-tailed ones? When 
should we be on the lookout for high-sigma events? And how can we answer these 
questions before the high-sigma event occurs? 

 I have already mentioned the fat-tailed probability distribution associated with 
the power law. This is known in statistics as the Pareto distribution, after the Italian 
economist Vilfredo Pareto (who also introduced the important concept of a Pareto 
optimum). The important point about this distribution is that the probability of 
high-sigma events declines slowly relative to distributions like the normal.   

   Technical Definitions of Fat Tails 

 There is no generally accepted definition of the term “fat tails,” which is also 
sometimes called “heavy tails.” One set of definitions (Schuster 1984) divides 
distributions into three classes. A thin-tailed distribution has a finite upper limit 
(such as the uniform distribution), a medium-tailed distribution has exponentially 
declining tails (such as the normal distribution), and a fat-tailed distribution has 
power-law tails (such as the Pareto distribution). This definition is proposed in 
Eugene F. Schuster (1984). 
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 To further illustrate these distinctions, it is helpful to go a step further and 
present the mathematics. Begin with the Pareto distribution, where the probability 
of an event is P = k1 X -(1+a), where a is the Pareto “shape parameter,” which reflects 
the importance of tail events; X is the variable of interest; and k1 is a constant that 
ensures that the sum of probabilities is 1. If a is very small, then the tail is very fat 
and the variable has a highly dispersed distribution. As a gets larger, the tail looks 
more like a normal distribution.  

 Figure 2 shows an example for a normal distribution and a Pareto distribution 
with a slope parameter of a = 1.5. The curves show the probability that an event will 
be at least N sigma, where sigma is a measure of dispersion. Note that the 
probability of a surprise is very small for normal distributions once a 4 or 5 sigma 
threshold is reached. For this version of the Pareto distribution, which is found for 
many economic and physical variables, the 4-sigma probability is still substantial. 

Applications 
 
 There are many applications of the statistics of tail events. An interesting 
recent one is earthquakes and tsunamis. It turns out that earthquake energy is a 
Pareto distribution with a very fat tail (a Cauchy distribution in which a = 1). If 
earthquakes really follow this distribution, then the expected value of earthquake 
power is unbounded! You can see why the Japanese were surprised in March 2011. 
 
 Another interesting application is finance. Stock price changes are Paretian or 
power law. Luckily, unlike earthquakes, the expected value of the change is finite, 
but the variance is infinite! That makes a mockery of “mean, variance” analysis in 
portfolio theory and other theories which require a finite variance of price changes. 
There is a beautiful paper by Paul Samuelson on this issue but this is largely 
ignored. 
 
 A final example is the distribution of income and wealth, which are also 
power law. The issue here is why? What process leads to this? This is an unsolved 
problem in economic theory (or at least one I haven’t seen the answer to). 

economics
Highlight
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Figure 1. Surprise index for oil prices and stock prices, 1960-2007 

Notes: The “surprise index” is measured as the 3-month change in the logarithm of 
the price divided by the 20-year moving average volatility, where each is measured 
monthly. The circles show the periods when the surprise was more than five moving 
standard deviations, with open circles for stock prices and solid circles for oil prices. 

Sources: Nordhaus (2007a) 
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Figure 2. Illustration of fat tails for a normal distribution and a Pareto 
distributions with scale parameter a = 1.5. 
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