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pr r ( nc dc1 ·ndi ng ·nti rcly n the axi ms r r the r al numbers) . ln thi book, ge m ' I ri · 

0 y 

RE £.7 R al numbers rcprc cntcd geometrically on a line. 

a rgument a rc u. cd t a large xtent to help motivate r clarify a p'trticular dis uss ion . 
Neverthel , the pr f f all the important th rem r pre ented in analytic fonn. 

I 3.8 Upper bound of a et, maximum element, least up~1er bound (supremum) 

The nine axi 111 Ii ted above conta in aJI the pr pertie f real numbers usually di u d 
in elementary a lgebra. here i another ax iom r fund amental importance in calculus th at 
i ordinarily not di cu ed in el mentary algebra cour e . This ax iom (or some pr perty 
eq uivalent to it) i u ed to establish the ex istence of irrational numbers. 

Irrational number ar ise in elementary algebra when we try to solve certain quadra.ti 
equations . For example, it is· desirable to have a rea l number x such that x 2 = 2. Fr m the 
nine axioms above) ve cannot prove that such an x exis ts in R, because these nine ax ioms 
are also satisfied by/ Q, and there is no rational number x whose square is 2. (A proof of thi 
statement is outlined in Exercise 11 of Section I 3.12.) Axiom 10 allows us to introduce 
irrational numbers in the real-number system, and it gives the real-number system a property 
of continuity that is a keystone in the logical structure of calculus. 

Before we describe Axiom 10, it is convenient to introduce some more terminology and 
notation. Suppose Sis a nonempty set of real numbers and suppose there is a number B 
such that 

x <B 

for every x in S. Then Sis said to be bounded above by B. The number Bis called an upper 
bound for S. We say an upper bound because every number greater than B will also be an 
upper bound. If an upper bound B is also a member of S, then B is called the largest 
member or the maximum element of S. There can be at most one such B. If it exists, we 
write 

B = maxS. 

Thus, B = max S if BE Sand x < B for all x in S. A set with no upper bound is said to be 
unbounded. above. 

The following examples serve to illustrate the meaning of these terms. 
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me ct like the one in Exam pl IH b und d above but have n maximum el m 11l. 

F r thee sets there is a c nce1 t whi h tak the place of th maximum I rn nt. Thi _· i:-: 
call d the least upper bound of the s t and it is defrned as follow : 

D . ·INITION OF LEAST UPPcR B UN . A number B is called a least upp r bound oj' a 
none,npty set S if B has the follo wing two properties: 

(a) .Bis an upper bound f or . 
(b) No number less than B is an upper bound for S. 

If S has a maximum element, thi max imum is also a least upper bound f r . But if 
doe not have a maximum element, it may till have a least upper bound. In Exampl 3 
above, the number 1 is a leas t upper bound for T although T has no maximum elem n t. 
(See Figure I.8.) 
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Least upper bound of T 

(a) S has a largest member: (b) Thas no largest member, but it has 
max S = I a least upper bound: sup T = I 

FrGURE 1.8 Upper bounds, maximum element, supremum. 

THEOREM 1.26. Two different numbers cannot be least upper bounds for the same set. 

Proof Suppose that B and C are two least upper bounds for a set S. Property (b) 
implies that C > B since Bis a least upper bound; similarly, B > C since C is a least upper 
bound. Hence, we have B = C. 

This theorem tells us that if there is a least upper bound for a set S, there is only one ?,nd 
we inay speak of the least upper bound. 

It is common practice to refer to the least upper bound of a set by the more concise term 
supremum, abbreviated sup. We shall adopt this convention and write 

B = sup S 

to express the fact that Bis the least upper bound, or supremum, of S. 
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U ing Axi m JO w can pr ve the following. 

THE REM 1.27. lv 1y nonempty set S that is bound db low has a greatest low r bo1111d; 
that is, there is a real number L such that L = inf . 

Proof Let - d n te the et f negat ives r number in . Then -S i nonem1 Ly and 
bounded above. Axi m 10 tell u that there i a number B which is a supremum r r - . ·. 
It is easy to veriry that - B = inf S. 

Let us refer once more to the examples in the foreg ing section . In Example 1, t h set f 
all positive real numbers, the number O is the infimum of S. This set has no minimum 
element. In Exa m.()les 2 and 3, the number O is the minimum element. 

In all these exa,nples it was easy to decide whether or not the set S was bounded ab vc 
or below, and it was also easy to determine the numbers sup Sand inf S. The next example 
shows that it may be difficult to determ.ine whether upper or lower bounds exist. 

EXAMPLE 4. Let S be the set of all numbers ·of the form (1 + 1/nt, where n = 1, 2, 3, .... 
For example, taking n = 1, 2, and 3, we find that the numbers 2, £, and lt are in S. 
Every number in the set is greater than 1, so the set is bounded below and hence has an 
infimum. With a little effort we can show that 2 is the smallest element of S so inf S = 
min S = 2. The set S is also bounded above, although this fact is not as easy to prove. 
(Try it!) Once we know that Sis bounded above, Axiom 10 tells us that there is a number 
which is the supremum of S. In this case> it is not easy to determine the value of sup S from 
the description of.S. In a later chapter we will learn that sup Sis an irrational number 
approximately equal to 2.718. It is an important number in calculus called the Euler 
number e. 

I 3.10 The Archimedean property of the real-number system 

This section contains a number of important properties of the real-number system which 
are consequences of the least-upper·-bound axiom. 
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P th i · nt ra di ·ts the fac t Lh ·H b is an upp ·r b 1111 d f r P. 

A s r ll a ri f T h r m J.2 , we irnm diat ly bla in t he f ll wing c n cgu n s: 

T l 1 . REM 1.29. For eve1y real isls a positive integer n such that n > x . 

Proof If Lhi were not so, me x w uld c a n upper bound for P, nlradicting 
The rem 1.2 . 

TII , REM J .30. lf x > 0 and if y is an arbitrary r al number, there exists a positive integer 
n su h that n > y . 

P roof A pply T heorem J. 29 with x replaced by y/x . 

T he pr p rty de cribed in T heorem T. 30 i called the A rchimedean property ot the rea l­
number y Lem. G eometrically it means tha t a ny line segment, no ma tter how Jong, may 
be covered by a finite number of line segment r a given positive length, no matter how 
mall. In o ther words, a small ruler used rt n eno ugh can measure a rbitra rily la rge 

dista nce . Archimedes realized that thi s was a fund a menta l p roperty of the tra ight line 
a nd sta ted it explicitly as one of the axioms of geometry. In the 19th and 20th centuries, 
non-Archimedean geometries have been constructed in which thi s axiom is rejected . 

F rom the Archimedean property, we can prove the foll owing theorem, which will be 
useful in our di scussion of integral calculus. 

THEOREM 1.31. If three real numbers a, x , ~nd y satisf y the inequalities 

(I.14) 

for every integer n > I , then x = a. 

Proof If x > a, Theorem I.30 tells us that there is a pos1t1ve integer n satisfying 
n(x - a)> y, contradicting (1.14). Hence we cannot have x > a, so we must have x = a. 

I 3.11 Fundamental properties of the supremum and infimum 

This section discusses three fundamental properties of the supremum and infimum that 
we shall use in our development of calculus. The first property states that any set of numbers 
with a supremum contains points a rbitrarily close to its supremum; similarly: a set with an 
infimum contains points arbitrarily close to its infimum. 
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Proofo/ (a) . 1rw ha l , ~ up - h r r ail . in , lh n up - hwouldbea 1111p1wr 
b und r r sma ll er lh~111 il s l n L up[ r b u11d . Theref re we must have x > sup,<..,' - /, 
r r at lea t n , in . Thi. I r v s (a). T he pr r f (b) is imilar . 

TH ·OR ·M J. 33. A ITI VG PR P ·R ' Y. iv n nonempty subs t A and B of R, let 'chwt , 
//p s t 

= {a + b I a E A, b E B} . 

(a) // each of A and B has a supremum, then C has a supr mum, and 

up C = sup A + sup B . 

(b)' ff each of A and B has an infimum, then C has an infimum, and 

inf C = inf A + inf B. 

Proof Assume each of A and B has a supremum . H c E C, then c = a + b, where 
a E A and b E B. T,herefore c < sup A + sup B ; so sup A + sup Bis an upper bound fo r . 
This shows that C has a supremum and that 

sup C < sup A + sup B . 

Now let n be any positive integer. By Theorem I.32 (with h = 1/n) there is an a in A and a 
b in B such that 

1 a> sup A - 11 , 

A_dding these inequalities, we obtain, 

11 
b > sup B - n. 

2 
a + b > sup A + sup B - 11 , or 

2 2 
sup A + sup B < a + b + n < sup C + n , 

since a + b < sup C. Therefore we have shown that 

2 
sup C < sup A + sup B . < sup C + n 
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f r ry s in ant ' has a supre1mm1, 111d T has an infimum, and th y 

sati ify th in quality 

up < inf 7' . 

Proof a ht in Tis a n upper b und f r . T he ref re ha a upremum which satisfies 

the inequa lity !> up ~ t r r a ll / in T. Hence up i a J wcr bo und for T, so T has an 

infimum which cann t b J th a n up . In lb r w rd ·, w have sup S < inf T, a 
asserted . 

*I 3.12 Exercises 

]. 

2. 
3. 
4. 

5. 

6. 

7. 

8. 
9. 

10. 

If x a nd y are arb itrary rea l numbers wilh x < y, pr ve tha t there is a l lea tone real z satisfying 
X < Z < y. 
If x is an arbitra ry real number, prove that there a re integ r ,n and II such that m < x < n. 
If x > 0, prove tha t there is a posi tive integer n such that 1/n < x . 
If x is an arbitrary r a l number, prove that there is exactly nc integer n which satisfies the 
inequalities n ~ x < n + 1. This n is called the greatest integer in x and is denoted by [x ]. 
For example, [5] = 5, [-0 ] = 2, [ -1d = - 3. 
If x is an a rbitrary real number, prove that there is exactly one integer n which satisfies 
x~ n<x+I. 
If x and y are arbitrary real numbers, x < y , prove that there exists a t least one rational num­
ber r satisfying x < r < y, and hence infinitely many. This property is often described by 
saying that the rational numbers are dense in the real-number system. 
If x is rational, x :;c 0, and y irrational, prove that x + y, x - y, xy, x/y, and y/x are all 
irrational. 
Is the sum or product of two irrational numbers always irrational? 
If x and y are arbitrary real numbers, x < y , prove tha t there exists at least one irrational 
number z satisfying x < z < y, and hence infinitely many . 
An integer n is called even if n = 2m for some integer m, and odd if n + 1 is even. Prove -the 
following statements : 
(a) An integer cannot be both even and odd. 
(b) Every integer is either even or odd . 
(c) The sum or product of two even integers is even. What can you say about the sum or 
product of two odd integers? 
(d) If n2 is even, so is n. If a 2 = 2b2, where a and bare integers, then both a and bare even. 
(e) Every rational number can be expressed in the form a/b, where a and b are integers, at 
least one of which is odd. 

11. Prove that there is no rational number whose square is 2. 

[Hint: Argue by contradiction. Assume (a/b) 2 = 2, where a and bare integers, a t least 
one of which is odd. Use parts of Exercise 10 to deduce a contradiction.] 


