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axcopt that tho oxprossion on tho right-hand side makes no sense at. the mgment.,

It ia the pathologies that give rise to the need for rigor. A satis{yjpsf rosolu-
tion to the queations raised will requira that wo ba absolutoly precjseabout, what
wo moean as we manipulate these infinito objects. It may segrThat progress is
slow at first, but that is bocause we do not want to fall jufo the trap of lotting
tho biasca of our intuition corrupt our arguments. Rjgdrous proofs are meant to
be a check on intuition, and in the ond we wilLate that they actually improve
our mental plcture of the mathematical inffle. As a final example, consider
something as intuitively fundamental s&”the assoclative property of addition
applied to the serles 3°°° | (~1)". CaGuping the terma one way gives

(-1+)+(-1+)+(=F D)+ (- 14+ =0+0+0+0++=0,
whereas grouping in gfother ylelds
14(1 “D)+(1-D+(1=-1)+ree=-140+0+04+0+. . =-1,

Manipuldfions that arc legitimato in finite settings do not always cxtend to
j Deciding when they do and why they do not is one of the

efilral themes of analysis,
-

2.2 The Limit of a Sequence

An understanding of infinite series depends heavily on a clear understanding of
the theory of sequences. In fact, most of the concepts in analysis can be reduced
to statements about the behavior of sequences. Thus, we will spend a significant
amount of time investigating sequences before taking on infinite series.

Deflnition 2.2.1, A sequence is a function whose domain is N,

This formal definition leads immediately to the familiar depiction of a se-
quence as an ordered list of real numbers. Given a function f: N — R, f(n) is
just the nth term on the list. The notation for sequences reinforces this familiar
understanding.

Example 2.2.2, Each of the following are common ways to describe a sequence.
M @3z
i) () =g
(ili) (an), where a, = 2" for each n € N,
(iv) (zn), where z1 = 2 and zpy = Eﬂ2ﬂ

On occasion, it will be more convenient to index a sequence beginning with
n = 0 or n = ng for some natural number ng different from 1. These minor
variations should cause no confusion. What is essential is that a sequence be an
infinite list of real numbers. What happens at the beginning of such a list is of
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little importance in most cases. The business of analysis is concerned with the
bohavior of tho infinite “tail” of a given soquence.
We now present what s arguably the most important definition in the book.

Deflnition 2.2.3 (Convergence of a Sequence). A sequence (ap,) converges
to a real number a if, for every positive number ¢, there exlsts an V € N such
that whenever n > N it follows that |a, - a| < e

To indicate that (an) converges to a, we write either lina, = a or (an) = a.
In an effort to decipher this complicated definition, it helps first to consider

the ending phrase “|a, — a| < ¢, and think about the points that satisfy an
inequality of this type.

Definition 2.2.4. Given a real number a € R and a positive number ¢ > 0,
the set
Ve@)={z€R:|z—-a| <€}

is called the ¢-neighborhood of a.

Notice that V,(a) consists of all of those points whose distance from a is less
than e. Said another way, Vi(a) is an interval, centered atl a, with radius e.

Vi(a)

Recasting the definition of convergence in terms of e-neighborhoods gives a
more geometric impression of what is being described.

Definition 2.2.3B (Convergence of a Sequence: Topological Version).
A sequence (a,) converges to a if, given any e-neighborhood V,(a) of a, there
exists a point in the sequence after which all of the terms are in V,(a). In other
words, every e-neighborhood contains all but a finite number of the terms of

(an).

Vz(“)
ay
2y @3 az °°° &
a—e a a+e

Definition 2.2.3 and Definition 2.2.3B say precisely the same thing; the nat-
ural number N in the original version of the definition is the point where the
sequence (a,) enters V(a), never to leave. It should be apparent that the value
of N depends on the choice of €. The smaller the e-neighborhood, the larger NV
may have to be.
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Example 2.2.5. Consider the sequence (a,), where a, = 1//n.
Our intuitive understanding of limits points confidently to the conclusion

that {
lim (-\/—ﬁ) =0.

Before trying to prove this not too impressive fact, let’s first explore the rela-
tionship between ¢ and N in the definition of convergence. For the moment, take
€ to be 1/10. This defines a sort of “target zone” for the terms in the sequence.
By claiming that the limit of (a,) is 0, we are saying that the terms in this
sequence eventually get arbitrarily close to 0. How close? What do we mean
by “eventually”? We have set ¢ = 1/10 as our standard for closeness, which
leads to the e-neighborhood (—1/10,1/10) centered around the limit 0, How
far out into the sequence must we look before the terms fall into this interval?
The 100th term ajgp = 1/10 puts us right on the boundary, and a little thought
reveals that

if mn>100, then a,c¢€ (--113, 1—10) :
Thus, for ¢ = 1/10 we choose N = 101 (or anything larger) as our response.

Now, our choice of ¢ = 1/10 was rather whimsical, and we can do this again,
letting € = 1/50. In this case, our target neighborhood shrinks to (-1/50, 1/50),
and it is apparent that we must travel farther out into the sequence before an
falls into this interval. How far? Essentially, we require that

1 1
=5
Thus, N = 2501 is a suitable response to the challenge of ¢ = 1/50.

It may seem as though this duel could continue forever, with different €
challenges being handed to us one after another, each one requiring a suitable
value of NV in response. In a sense, this is correct, except that the game is
effectively over the instant we recognize a rule for how to choose N given an
arbitrary € > 0. For this problem, the desired algorithm is implicit in the algebra
carried out to compute the previous response of N = 2501, Whatever ¢ happens
to be, we want

which occurs as long as  n > 507 = 2500.

1 : g 1
W < ¢ which is equivalent to insisting that n > =z

With this observation, we are ready to write the formal argument,.

lim (%) =0.

Proof. Let € > 0 be an arbitrary positive number. Choose a natural number N
satisfying

We claim that

N>E§.
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Wo now verify that this choice of N has the desired property. Let n > N. Then,

n> = implies = <e¢ and hence |ap -0/ <e.

¢ N

Quantifiers

The definilion of convergence given ealier is the result of hundreds of years of
refining Lhe intuitive notion of limit into a mathemalically rigorous statement.
The logic involved is complicated and is intimalely tied Lo the use of Lthe quan-
tifiers “for all" and “there exists.” Learning Lo wrile a grammaltically correct
convergence proof goes hand in hand with a deep understanding of why the
quaniifiers appear in the order that they do.

The definition begins with the phrase,

“For all ¢, there exists N € N such that ..."

Looking back at our first example, we see that our forial proof begins with, “Let
€ > 0 be an arbitrary positive number.” This is followed by a construction of N
and then a demonstration that this choice of N has the desired property. This,
in fact, is a basic outline for how every convergence proof should be presented.

TEMPLATE FOR A PROOF THAT (Zp) — z:
- “Let € > 0 be arbitrary.”

Demonstrate a choice for N € N. This step usually requires the most
work, almost all of which is done prior to actually writing the formal
proof.

- Now, show that N actually works.
- “Assumen > N.”

- With N well chosen, it should be possible to derive the inequality

|zp — z| < e.
1im("+1)=1.
n

As mentioned, before attempting a formal proof, we first need to do some
preliminary scratch work. In the first example, we experimented by assigning
specific values to ¢ (and it is not a bad idea to do this again), but let us skip
straight to the algebraic punch line. The last line of our proof should be that
for suitably large values of n,

Example 2.2.6. Show

’n——+1-—1‘<e.
n
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Becauso l

n!

n+tl

—_— ]

n

this is equivelent to the inequality 1/n < ¢ or n > 1/¢. Thus, choosing N to be
an Integer greater than 1/c¢ will suffice.
With the worl of the proof done, all that remains is the formal writeup.

Proof, Let ¢ > 0 be arbitrary, Choose N € N with N > 1/e. To vorify that
this cholce of N s appropriate, lot n € N satisfy n > N. Thon, n > N hnplics
n > 1/¢, which is thoe sane us seying 1/n < ¢. Finally, this means

n+1

S
n

as desired. Q

Divergence

Significant insight into the role of the quantifiers in the definition of convergence
can be gained by studying an example of a sequence that does not have a limit.

Example 2.2.7. Consider the sequence

(11111111111 1)

’ 5151 Z,g)_gr's"—'gag»_g"51_5a 5;_'5'1"' 0

How can we argue that this sequence does not converge to zero? Looking at the
first few terms, it seems the initial evidence actually supports such a conclusion.
Given a challenge of ¢ = 1/2, a little reflection reveals that after N = 3 all the
terms fall into the neighborhood (~1/2,1/2). We could also handle ¢ = 1/4.
(What is the smallest possible /V in this case?)

But the definition of convergence says “For all ¢ > 0...,” and it should be
apparent that there is no response to a choice of ¢ = 1/10, for instance. This
leads us to an important observation about the logical negation of the definition
of convergence of a sequence. To prove that a particular number z is not the
limit of a sequence (z,), we must produce a single value'of ¢ for whichno N € N
works. More generally speaking, the negation of a statement that begins “For
all P, there exists Q...” is the statement, “For at least one P, no Q is possible...”
For instance, how could we disprove the spurious claim that “At every college
in the United States, there is a student who is at least seven feet tall”?

We have argued that the preceding sequence does not converge to 0. Let’s
argue against the claim that it converges to 1/5. Choosing € = 1/10 produces
the neighborhood (1/10,3/10). Although the sequence continually revisits this
neighborhood, there is no point at which it enters and never leaves as the defini-
tion requires. Thus, no N exists for € = 1/10, so the sequence does not converge
to 1/5.

Of course, this sequence does not converge to any other real number, and it
would be more satisfying to simply say that this sequence does not converge.
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Exercise 2.2.7. Informally apeaking, the sequence /n “converges 1.
(a) Imitate the logical structure of Definition 2.2.3 to create a fgorous defi-
nition for the mathematical statement limz, = co. Use this definition to prove
lim \/n = co. .
(b) What does your definition in (a) say about
(1,0,2,0,3,0,4,0,5,0,...)7

le particular sequence

Exercise 2.2.8. Here arc two uscful definitions:

(i) A sequence (a,) is eventually ip/h set A C R if there exists an N € N

such that a,, € A for all n >

(ii) A sequence (an) i8 fregdently in a set A C R if, for every N € N, there
exists an n > N sugh that a, € A.

(a) Is Lthe sequepde (—1)™ eventually or frequently in the set {1}7

(b) Which definition is stronger? Does frequently imply eventually or does
eventually i

(c) Giv€ an alternste rephrasing of Definition 2.2.3B using either frequently
or 'eveptally. Which is the termn we want?
) Suppose an infinite number of terms of a sequence (z,) are equal to
" Is (z,) necessarily eventually in the interval (1.9,2.1)? Is it frequently in
(1.9,2.1)7

2.3 The Algebraic and Order Limit Theorems

The real purpose of creating a rigorous definition for convergence of a sequence is
not to have a tool to verify computational statements such as lim2n/(n+2) = 2.
Historically, a definition of the limit like Definition 2.2.3 came 150 years after the
founders of calculus began working with intuitive notions of convergence. The
point of having such a logically tight description of convergence is so that we can
confidently state and prove statements about convergence sequences in general.
We are ultimately trying to resolve arguments about what is and is not true
regarding the behavior of limits with respect to the mathematical manipulations
we intend to inflict on them,

As a first example, let us prove that convergent sequences are bounded. The
term“bounded” has a rather familiar connotation but, like everything else, we
need to be explicit about what it means in this context.

Definition 2.3.1. A sequence (z,) is bounded if there exists a number M > 0
such that |z,| < M for all n € N.

Geometrically, this means that we can find an interval [~ M, M] that contains
every term in the sequence (z,).

Theorem 2.3.2. Every convergent sequence is bounded.
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Proof. Assume (z,) converges to a limit I. This means that given a particular
value of ¢, say ¢ = 1, we know there must exist an N € N such that if n > N,
then z, is in the interval (! — 1, 4+ 1). Not knowing whether [ is positive or
negative, we can certainly conclude that

lxnl <|[l[+1
for all n > N.
Tn, 2N
Sl =1 s A
\ 7
0 el [ t

M

We still need to worry (slightly) about the the terms in the sequence that
come before the Nth term. Because there are only a finite number of these, we
let

M= ma.x{l:z:1|, |:D2|, |:z:3|, ol I:Z:N_ll, [Z] + 1}.

It follows that |z,| < M for all n € N, as desired. O

This chapter began with a demonstration of how applying familiar algebraic
properties (commutativity of addition) to infinite objects (series) can lead to
paradoxical results. These examples are meant to instill in us a sense of caution
and justify the extreme care we are taking in drawing our conclusions. The
following theorems illustrate that sequences behave extremely well with respect
to the operations of addition, multiplication, division, and order.

Theorem 2.3.3 (Algebraic Limit Theorem). Letlima, = a, and limb,, =
b. Then,

(i) lim(can) = ca, for allc € R;
(i) lim(an + bn) = a +b;
(iii) lim(apby) = ab;

(iv) lim(an/b} = a/b, provided b # 0.

Proof. (i} Consider the case where ¢ # 0. We want to show that the sequence
(can) converges to ca, so the structure of the proof follows the template we
described in Section 2.2. First, we let ¢ be some arbitrary positive number. Our
goal is to find some point in the sequence (ca,) after which we have

[can —cal < e.

Now,
|can — cal = |c||an — al.
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We arc given that (an) —+ a, 80 we know we can make |a, — a| as smell as we

like. In particular, we can choose an NV such that,
€

lan —a| < =

fel

whenever n > N. To see that this N indeed works, observe that, for alln > N,
|can — ca| = |c|lan — a| < Icll%l =i

The case ¢ = 0 reduces to showing that the constant sequence (0,0,0,...)
converges to 0. This is addressed in Exercise 2.3.1.

Before continuing with parts (ii), (iii), and (iv), we should point out that
the proof of (i), while somewhat short, is extremely typical for a convergence
proof. Before embarking on a formal argument, it is a good idea to take an
inventory of what we want to make less than ¢, and what we are given can be
made small for suitable choices of n. For the previous proof, we wanted to make
|can - cal < ¢, and we were given |an —a| < anything we like (for large values of
n). Notice that in (i), and all of the ensuing arguments, the strategy each time
is to bound the quantity we want to be less than ¢, which in each case is

|(terms of sequence) — (proposed limit)|,

with some algebraic combination of quantities over which we have control.

(ii} To prove this statement, we need to argue that the quantity
[{tr + br) — (a + b)]

can be made less than an arbitrary ¢ using the assumptions that |an — a] and
|bn, — b can be made as small as we like for large n. The first step is to use the
triangle inequality (Example 1.2.5) to say

|(an + bn) — (a+b)| = |(an — a) + (bn — b)| < |an — a| + |bn — b].

Again, we let ¢ > 0 be arbitrary. The technique this time is to divide the ¢
between the two expressions on the right-hand side in the preceding inequality.
Using the hypothesis that (a,) — @, we know there exists an Ny such that

€
7]
Likewise, the assumption that (b,) — b means that we can choose an Ny so
that

lan, —a| < whenever n > Ny

lbn — b| < —;— whenever n > Nj.

The question now arises as to which of N7 or Ny we should take to be our
choice of N. By choosing N = max{N1, Ny}, we ensure that if = > N, then
n > N7 and n > Ny. This allows us to conclude that

[(an +bn) —(@a+B)] < |an —a|+jbn — b
€ €
< §+—2'—6
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for all n = N, ns dosired.

(1if) To show that (enbn) + ab, we bogin by observing that

|anbn ~ ab] |anbn — aby + aby, — abl
< |anbn — abn| + |aby — ab|
lb"”a" al + la“b" =, bl-

In the initial step, we subtracted and then added ab,,, which created an oppor-
tunity to use the triangle inequality. Essentially, we have broken up the distance
from anby, to ab with a midway point and are using the sum of the two distances
to overestimate the original distance. This clever trick will become a familiar
technique in arguments to come,

Letting ¢ > 0 be arbitrary, we again proceed with the strategy of making each
plece in the preceding inequality less than ¢/2. For the piece on the right-hand
side {|al|bn ~ b]), if @ % 0 we can choose N so that

n2 Ny implies [by — b < ﬁ%

(The case when a = 0 is handled in Exercise 2.3.7.) Getting the term on the
left-hand side {Jby,||an — al) to be less than ¢/2 is complicated by the fact that
we have a variable quantity |bn| to contend with as opposed to the constant |a|
we encountered in the right-hand term. The idea is to replace [b,| with a worst-
case estimate. Using the fact that convergent sequences are bounded (Theorem
2.3.2), we know there exists a bound M > 0 satisfying |b,| < M for all n € N,
Now, we can choose N; so that

le
lap —a| < 75 whenever n 2> N,.
To finish the argument, pick N = max{Ny, N2}, and observe that if n > N,
then

|@nbn — ab) [anbn, — aby| + |abn — ab]
|bnllan — al + |af[bn — ]

Mlan — a| + |a|[bs — b
€ €
M (m) -+ [al (m> = €.

(iv) This final statement will follow from (iii) if we can prove that

;Wi 1
(bn) = b implies (E) =

IA (1 IA

A

whenever b # 0. We begin by observing that

L1 _[o-by
b b [b]lbn|
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Because (by) -+ b, we can make the preceding numerator as small as we like by
choosing 7 largo. The problem comes in that we need a worst-case cstimate on
the size of 1/(|b||ba]). Because the by, terms arc in the denominator, we are no
longer interested in an upper bound on |by,] but rather in an inequality of the
form |bn| = 6 > 0. This will then lead to a bound on the size of 1/(]b||by|).

The trick is to look far enough out into the sequence (bn) so that the terms
are closer to b than they are to 0. Consider the parlicular value ¢ = |b|/2.
Because (by) — b, Lhere exists an N; such thai |by — b < |b]/2 for all n 2 Ny,
This implies |b,| > |6]/2.

Next, choose N3 80 that n > N, implies

e|b[?
lbp, = b| < |_2|_
Finally, if we lot N = max{N;, N3}, then n > N implies
1 1 1 e 1
e iy e i S
b b‘ = bl < "2

Limits and Order

Although there are o few dangers to avoid (see Exercise 2.3.8), the Algebraic
Limit Theorem verifies that the relationship between algebraic combinations of
sequences and the limiting process is as trouble-free as we could hope for. Limits
can be computed from the individual component sequences provided that each
component limit exists. The limiting process is also well-behaved with respect
to the order operation.

Theorem 2.3.4 (Order Limit Theorem). Assume lima, = a and limb,, =
b.

(i) If ap, 20 for alln € N, thena 2 0.

(ii) Ifa, € b, foralln e N, then a £ b.

(iil) If there exists c € R for which ¢ < by, for alln € N, then ¢ £ b. Similarly,
ifapn <c foralln €N, thena < c.

Proof. (i) We will prove this by contradiction; thus, let’s assume a < 0. The
idea is to produce a term in the sequence (a,) that is also less than zero. To
do this, we consider the particular value ey = |a|. The definition of convergence
guarantees that we can find an N such that |a, — a| < |a| for all n > N. In
particular, this would mean that |ay — a] < |a|, which implies ay < 0. This
contradicts our hypothesis that ay > 0. We therefore conclude that a > 0.

an
cc G2 01

( I““)““‘

a—ep a =a+¢co
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(i1) Tho Algobraic Limit Thoorom onsures that the sequonce (by -~ an) con-
vorges to b - ¢, Bocauso by — ay = 0, we can apply part (1) to got that b—a > 0.

(111) Take an = ¢ (or by = ¢) for all n € N, and apply (ii). a

A word sbout the Ides of “talls” is in order. Loosely speaking, limits and
tholr proportlos do not dopend at all on what happans at tho hoginning of
tho sequonco but aro strictly dotormined by what happons whon n gote large.
Changing tho valuo of the first ten—or ten thousand—terms in a particular
sequence has no effoct on tho limit. Thoorem 2.3.4, part (1), for instance, assumes
that ¢n, 2 0 for all n € N, However, the hypothesis could be weakened by
assuming only that there oxista some point Ny whore ap > 0 for all n > Ny,
Tho thoorem romains true, and in fact tho same proof is valid with the provision
that whon N is choson it bo at loast as large as N,

In tho languagoe of analysis, whon a property (such as non-negativity) is not
necessarily true aboul some finite number of initial terms but is true for all
terms in the sequance after some point N, we say that the ssquence eventu-
ally has this property. (See Exercise 2.2.8,}) Theorem 2.3.4, part (1), could be
restated, “Convergent sequences that are eventually nonnegative converge to
nonnegative limits." Parts (i) and (lii) have similar modifications, as will many
other upcoming resulis.

Exercises

Exercise 2.3.1, Show that the constant sequence (a,a,a,a,...) converges to
a.

Exercise 2.3.2. Let z, 2 0 for all n € N.
(8) If (z4) — 0, show that (\/Z5) — 0.
(b) If (z5) — x, show that (\/Zn) — /=.

Exercise 2.3.3 (Squeeze Theorem). Show that if z, < y, < 2p foralln €
N, and if limz,, = lim 2, = [, then limy,, = [ as well.

Exercise 2.3.4. Show that limits, if they exist, must be unique. In other words,
assume lima, = I; and lima, = I3, and prove that [} = .

Exercise 2.3.5. Let (z,) and (y,) be given, and define (25,) to be the “shuffled”
sequence (T1,¥1,22,Y2,%3,Y31+++ s Tny Yn,y -+ ). Prove that (z,) is convergent if
and only if (z,) and (y») are both convergent with limz, = limy,.

Exercise 2.3.6. (a) Show that if {(b,) — &, then the sequence of absolute values
|bn| converges to |b|.

(b) Is the converse of part {a) true? If we know that |b,| — [b], can we
deduce that (b,) — b7

Exercise 2.3.7. (a) Let (an) be a bounded (not necessarily convergent) se-
quence, and assume limb, = 0. Show that lim(apbs) = 0. Why are we not
allowed to use the Algebraic Limit Theorem to prove this?
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Definition 2.4.1. A soquence (ay) is increasing if an, < apyy for alln € N and
decreasing if a, > an4) for all n € N. A sequence is monotone if it is cither
increasing or docroasing.

Theorem 2.4.2 (Monotone Convergence Theorem). If a sequence is mono-
tone and bounded, then it converges.

Proof. Let (an) be monotone and bounded. To prove (an) converges using the
definition of convergence, we are going to need a candidate for the limit. Let’s
assume the sequence is increasing (the decreasing case is handled similarly), end
consider the set of poluts {ay, : n € N}. By assumption, this set is bounded, so
we can let

s = sup{ay : n € N}.

It seems reasonable to claim that lim(a,) = s.

s=sup{anin€N}
81 03 o BpSOnstee.

To prove this, let ¢ > 0. Because s is the least upper bound of {a, : n € N},
8 — ¢ is not an upper bound, so there exists a point in the sequence ay such
that s — ¢ < ay. Now, the fact that (a,) is increasing implies that if n > N,
then ay < a,. Hence,

§—e<ay<a, <8< s8+¢,
which implies |an — 8| < €, as desired. O

The Monotone Convergence Theorem is extremely useful for the study of
infinite series, largely because it asserts the convergence of a sequence without
explicit mention of the actual limit. This is & good moment to do some prelimi-
nary investigations, so it is time to formalize the relationship betweep sequences
and series.

Definition 2.4.3. Let (b,) be a sequence. An infinilgs€ries is a [ormal expres-

sion of the form

m=0b1+bs+b3g+ -+ bm,

-

% series S oo . b, converges to B if the sequence (s;) converges
n=1 g

fis case, we write ) oo ; bn = B.
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(b) Tho lsmst superior of (ay), or limaupay, I8 doﬂw

limsupa, = lim

where y, I8 the sequence from part of this exercise, Provide & reasonable
definition for liminf a, and briefy explain why it always exlsts for any bounded
sequence,
(c) Prave that limjrfa, < limsupa, for every bounded sequence, and give
an example of a gedience for which the inequality s strict.
(d) Showiat liminfa, = linsupa, if and only If lhina, exists. In this
case, sl _idfreo share the same value,

—

2.5 Subsequences and the Bolzano—Weierstrass
Theorem

In Examplo 2.4.5, we showed that the sequence of partial sums (s,,) of the

harmonic series does not converge by focusing our attention on a particular

subsequence (sqe) of the original sequence. For the moment, we will put the

topic of infinite series aside and more [ully develop the important concept of
subsequences,

Definition 2.8.1. Let (a,) be a sequence of real numbers, and let n; < ne <
ng < ng < ng < +++ be an increasing sequence of natural numbers. Then the
sequence

Qnyy Ongy Gngy Ongs Gngy * **

is called a subsequence of (ay) and is denoted by (an,), where j € N indexes
the subsequence.

Notice that the order of the terms in a subsequence is the same as in the
original sequence, and repetitions are not allowed. Thus if

0 e R L
R I R e
(an) ( ’213’4)5)6) )’
then
(e U o, Toapb] 1 1
24’6’8’ 10' 100’ 1000’ 10000°
are examples of legitimate subsequences, whereas
11 1 1 1 1 1111
e et T e T e S
(10’5’100’50’1000’500’ ) i ( by sy )
are not.

Theorem 2.5.2. Subsequences of a convergent sequence converge to the same
limit as the original sequence.
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Proof. Exorcise 2.5.1 O

This not too surprising result has several somewhat surprising applications.
It s the key Ingredient for understanding when infinite suins arc associative
(Exercise 2.5.2). We can also use it in the following clever way to compute
values of some familiar limits.

Example 2,5.3. Let 0 < b < 1. Because
bS>BP>B >0 >...>0,

the sequence (b") is decreasing and bounded below. The Monotone Convergence
Theorem allows us to conclude that (b™) converges to some ! satisfying b > [ 2 0.
To compute J, notice that (b3") is a subsequence, so (6*") — ! by Theorem 2.5.2.
But (*") = (b")(b"), so by the Algebraic Limit Theorem, (b*") — (.1 = [2.
Because limits are unique, {2 = [, and thus [ =0,

Without much trouble (Exercise 2.5.5), we can generalize this example to
conclude (b™) — 0 whenever -1 < b < 1.

Example 2.5.4 (Divergence Criterion). Theorem 2.5.2 is also useful for pro-
viding economical proofs for divergence. In Example 2.2.7, we were quite sure
that

1_ll_l1 11_11_11_1_1__1 1
3 2!31 4,51 5’51 5,5’ 5,57 5’5’ 5’

did not converge to any proposed limit. Notice that

11111
Rl R

is a subsequence that converges to 1/5. Also,

el Slg A T
BB L

is a different subsequence of the original sequence that converges to —1/5. Be-
cause we have two subsequences converging to two different limits, we can rig-
orously conclude that the original sequence diverges.

The Bolzano—Weierstrass Theorem

In the previous example, it was rather easy to spot a convergent subsequence
(or two) hiding in the original sequence. For bounded sequences, it turns out
that it is always possible to find at least one such convergent subsequence.

Theorem 2.5.5 (Bolzano—Weierstrass Theorem). Every bounded sequence
contains a convergent subsequence.
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Proof. Lot (ay) be a bounded sequonce so that thore oxiats M > 0 satisfying
jan| = M for all n € N, Bisoct, the closod interval [~ M, M| Into the two closed
intorvals [~ M, 0] and [0, M]. (The midpoint is included in both halves.) Now, it
muat. bo that at loast onoe of these closod intervals contains an infinite number of
the pointa in the sequonce (an). Select a half for which this is the case and label
that Interval as I;. Thon, lot a,, bo some point in the sequence (a,) satisfying
Qn, € h.

p___ o
——t—5 s - |9-5-58500000-0-0-} o L= o :
-M | ) M
5
Gny I3

Next, we biscct Iy into closed Intervals of equal length, and let 72 be a
half that again contains an infinite number of points of the original sequence.
Becauso there are an infinite number of points from (an) to choose from, we
can select an an, from the original sequence with ng > n; and a,, € I5. In
general, we construct the closed interval Iy by taking a half of Ix—; containing
an infinite number of points of (a,) and then seloct 7k > Ny > -+ > ng >y
8o that an, € I.

We wanl, to argue thal (a,,) is a convergent subsequence, but we need a
candidate for the limit. The sets

ho2hLh2oIL32. .

form a nested sequence of closed intervals, and by the Nested Interval Property
there exists at least one point z € R. contained in every JI. This provides us
with the candidate we were looking for. It just remains to show that (an,) — =.

Let ¢ > 0. By construction, the length of Iy is M(1/2)*~! which converges
to zero. (This follows from Example 2.5.3 and the Algebraic Limit Theorem.)
Choose N so that k > N implies that the length of Iy is less than ¢. Because
and a,, are both in Iy, it follows that |a,, —z| <e. O

Exercises
Exercise 2.5.1. Prove Theorem 2.5.2.

Exercise 2.5.2. (a) Prove that if an infinite series converges, then the associa-
tive property holds. Assume a; + a; + a3 + a4 + a5 + -+ converges to a limit L
(i.e., the sequence of partial sums (s,) — L). Show that any regrouping of the
terms

(01482 + -+ +an,) + (Gnyt + o+ 8n) + (@ngs1 oo+ ang) + -
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