Barter Exchange and Core: Lecture 2

Ram Singh

Course 001

Ram Singh: (DSE)

Exchange and Core

In the last lecture, we discussed the following questions:

Question

How can we redistribute the endowments such that:

- Every individual prefers the reallocated bundle received over her initial endowment
- No subset of individuals can do better for themselves using their own endowments
- Every subset of individuals prefers the reallocated bundle to what they can manage to have on their own.

Possible Outcomes under Barter

We

• Assume all exchanges are voluntary.

For a two-person two-goods economy, we saw:

Allocation $\mathbf{y} = (\mathbf{y}^1, \mathbf{y}^2)$ will be blocked/rejected, if any of the following holds:

- **()** $u^1(\mathbf{e}^1) > u^1(\mathbf{y}^1)$; or
- 2 $u^2(\mathbf{e}^2) > u^2(\mathbf{y}^2)$; or
- There exists a feasible allocation (x¹, x²) that is Pareto superior to (y¹, y²), i.e., for some (x¹, x²)

$$u^{i}(\mathbf{x}^{i}) \geq u^{i}(\mathbf{y}^{i})$$
. for $i = 1, 2$.And
 $u^{i}(\mathbf{x}^{i}) > u^{i}(\mathbf{y}^{i})$

holds for at least one *i*.

< 日 > < 同 > < 回 > < 回 > < □ > <

'Core' Allocations

Ram Singh: (DSE)

Exchange and Core

4/16

Possible Outcomes under Barter

For the following example :

- Endowments: $e^1 = (1, 9)$, and $e^2 = (9, 1)$
- Preferences: $u^i(x, y) = x.y$. That is, $u^1(x_1^1.x_2^1) = x_1^1.x_2^1$ and $u^2(x_1^2.x_2^2) = x_1^2.x_2^2$
- Allocation: $\mathbf{x}^1 = (3,3)$, and $\mathbf{x}^2 = (7,7)$

We saw

- $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$ is Pareto superior to $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2)$.
- $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2)$ will be rejected in favour of $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$.
- Formally speaking, $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2)$ will be blocked by allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$.
- Allocation $\mathbf{x}^1 = (3, 3)$, and $\mathbf{x}^2 = (7, 7)$ cannot be blocked
- Allocation $z^1 = (7,7)$, and $z^2 = (3,3)$ cannot be blocked
- Allocation $\mathbf{w}^1 = (5,5)$, and $\mathbf{z}^2 = (5,5)$ cannot be blocked

(日本)(日本)(日本)(日本)

Core Allocations: Properties I

For a two-person two-good economy, an allocation $\bm{x}=(\bm{x}^1,\bm{x}^2)$ belongs to the Core, only if

- Every *i* prefers \mathbf{x}^i at least as much as \mathbf{e}^i , i = 1, 2
- Allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$ is Pareto Optimum

Question

For the above example,

- What is the size of the Core?
- Does Core denote the set of possible outcomes under Barter?

Question

Does the set of Pareto optimum allocations depend on the initial endowments?

Core of a 3 \times 2 economy 1

Example

Consider the following three-person, two-good economy:

• Endowments: $e^1 = (1, 9)$, $e^2 = (9, 1)$, and $e^3 = (5, 5)$

• Preferences:
$$u^1(x_1^1.x_2^1) = x_1^1.x_2^1$$
;
 $u^2(x_1^2.x_2^2) = x_1^2.x_2^2$;
and $u^3(x_1^3.x_2^3) = x_1^3.x_2^3$

Now, consider the following allocation:

$$\mathbf{x}^1 = (3,3), \, \mathbf{x}^2 = (7,7), \, \text{and} \, \, \mathbf{x}^3 = (5,5).$$

Core of a 3 \times 2 economy $\,$ II

Question

- Is the allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3)$ feasible?
- Is allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3)$ Pareto-superior to $\mathbf{e} = (\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3)$?
- Is allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3)$ Pareto Optimum?
- Does allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3)$ belong to the Core?

Consider a Coalition of 1 and 3, i.e., $S = \{1,3\}$. Let **y** be such that

$$y^1 = (2,5)$$
 and $y^3 = (4,9)$.

Recall, $e^1 = (1, 9)$ and $e^3 = (5, 5)$.

So the set S = {1,3} is better off rejecting the allocation x = (x¹, x², x³), as defined above

イロト イポト イヨト イヨト 二日

Core of a 3×2 economy III

- We can say that S = {1,3} forms a 'blocking' coalition against the allocation x = (x¹, x², x³),
- So, allocation x = (x¹, x², x³) is Not an Unblocked allocation, and hence does not belong to the Core
- Hence $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3)$ does not belong to the

Remark

A Pareto Optimum allocation

- may not belong to the Core
- will not belong to the Core if there exists a blocking coalition

Example 4×2 economy I

Example

There are four individuals and two goods. Utility functions are: $u^i(x_1^i x_2^i) = x_1^i x_2^i$, for i = 1, ..., 4. Endowments are:

$$\mathbf{e}^1=(1,9),\,\mathbf{e}^2=(9,1),\,\mathbf{e}^3=(1,9),$$
 and $\mathbf{e}^4=(9,1),$ respectively.

Now, consider the allocation:

$$\mathbf{x}^{1} = (3,3) = \mathbf{x}^{3}$$
 and $\mathbf{x}^{2} = (7,7) = \mathbf{x}^{4}$.

Again, the allocation $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4)$ is Pareto optimum but does not belongs to the Core of 4×2 economy of Example 4.

Let
$$S = \{1, 2, 3\}$$
, $\mathbf{y}^1 = (3, 4) = \mathbf{y}^3$ and $\mathbf{y}^2 = (5, 11)$.

You can verify that *S* forms a Blocking coalition against $(\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \mathbf{x}^4)$.

Ram Singh: (DSE)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Here is a general definition of Blocking Coalition for $N \times M$ economy.

Definition

Let $S \subseteq \{1, ..., N\}$. S is called a blocking coalitions for $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^N)$ if there is some vector \mathbf{y} such that

$$\sum_{i \in S} y_j^i = \sum_{i \in S} e_j^i \text{ for all } j = 1, ..., M$$
$$u^i(\mathbf{y}^i) = u^i(y_1^i, ..., y_M^i) \geq u^i(x_1^i, ..., x_M^i) = u^i(\mathbf{x}^i) \text{ for all } i \in S$$
$$u^i(\mathbf{y}^i) = u^i(y_1^i, ..., y_M^i) > u^i(x_1^i, ..., x_M^i) = u^i(\mathbf{x}^i) \text{ for some } i \in S$$

Core of Barter Exchange

Consider a pure exchange economy $(u^i(.), \mathbf{e}^i)_{i \in N}$. For this economy,

Definition

Core is a set of allocations, $C(u^i(.)_{i \in N}, \mathbf{e})$, such that if $\mathbf{x} \in C(u^i(.)_{i \in N}, \mathbf{e})$, then **x** CANNOT be blocked by any coalition.

Remark

The size of the Core, i.e., outcome of barter depends on the 'nature' of the economy:

- the nature of individual preferences
- the initial endowment/wealth
- the number of individuals in the economy

< ロ > < 同 > < 回 > < 回 >

Identifying the Core

Question

How to find the Core allocations?

If there are 25 individuals, you have to check $2^{25} - 1$ as potential coalitions that may block an allocation.

Question

Does the Core always exist?

- Scarf (1963) showed that when indifference curves are convex, the Core is non-empty
- Size of the Core shrinks with number of agents Edgeworth (1881); Debreu and Scarf (1963); Aumann (1964), etc.

The Core in Real World

Question

In real world,

- Will bargaining among individuals always lead to one of the allocations in the Core?
- Are there factors that can frustrate successful bargaining among individuals?

Question

- Can the market lead to the same set of outcomes as the Barter?
- Can outcome under market be better than under the Barter?

A (1) > A (2) > A

Barter Vs Market I

Informational and logistical requirements

- Barter requires
 - Search costs to identify suitable trading partners
 - Successful negotiations
- Market requires
 - No search costs
 - No cooperation only decision making at individual level

2 Relative Efficiency

- Barter
 - Pareto efficient outcome is unlikely, for large set of individuals
- Competitive Market
 - Pareto efficient outcome more likely, especially for large set of individuals

The claims are valid with or without production

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Barter Vs Market II

- Effect of Policy Interventions
 - Barter
 - Policy intervention only through reallocation of endowments
 - Market
 - Policy intervention through reallocation of endowments as well as direct transfers of 'purchasing power'
- Remark

In real world,

- Neither Barter nor Market can guarantee the intended outcome
- Some endowments are not transferable E.g. ????

Ram Singh:	(DSE)
------------	-------

< 回 > < 三 > < 三 >