Market Equilibrium

Ram Singh

Lecture 3

Ram Singh (DSE)

æ

イロト イヨト イヨト イヨト

Market Exchange: Basics

Let us introduce 'price' in our pure exchange economy. Let,

- There be N individuals and M goods
- $\mathbf{e}^{i} = (\mathbf{e}_{1}^{i}, ..., \mathbf{e}_{M}^{i})$ denote endowment for individual i
- p_i denote the 'price' of *i*th good; $p_i > 0$ for all i = 1, ..., M.
- So the price vector is

$$\mathbf{p} = (p_1, ..., p_M) >> \mathbf{0}.$$

Assume

each good has a market and each individual is 'price-taker'.

For each individual,

- Total value of the initial endowment depends on the price vector
- An economic agent can buy any bundle of goods
- However, the total value of the bundle bought cannot exceed the total value of her endowment.

Ram Singh (DSE)

Market Equilibrium

Market Exchange: 2 × 2 economy I

For person 1, the set of feasible allocations/consumptions is the set of $\mathbf{y}^1 = (y_1^1, y_2^1)$ such that:

$$p_1y_1^1 + p_2y_2^1 \le p_1e_1^1 + p_2e_2^1.$$

Assuming monotonic preferences, Person 1 maximizes utility by choosing bundle $\mathbf{x}^1 = (x_1^1, x_2^1)$ s.t.

$$p_1 x_1^1 + p_2 x_2^1 = p_1 e_1^1 + p_2 e_2^1$$

Person 2 maximizes utility s.t.

$$p_1 x_1^2 + p_2 x_2^2 = p_1 e_1^2 + p_2 e_2^2.$$

Recall, within the Edgeworth box, for each allocation $(\mathbf{x}^1, \mathbf{x}^2)$, we have

$$x_1^1 + x_1^2 = e_1^1 + e_1^2$$
, and $x_2^1 + x_2^2 = e_2^1 + e_2^2$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Market Exchange: 2×2 economy II

Note: The budget line for person 2 is: $p_1x_1^2 + p_2x_2^2 = p_1e_1^2 + p_2e_2^2$. However,

$$\begin{aligned} p_1 e_1^2 + p_2 e_2^2 &= p_1 x_1^2 + p_2 x_2^2, i.e., \\ p_1 e_1^2 + p_2 e_2^2 &= p_1 (e_1^1 + e_1^2 - x_1^1) + p_2 (e_2^1 + e_2^2 - x_2^1), i.e., \\ 0 &= p_1 (e_1^1 - x_1^1) + p_2 (e_2^1 - x_2^1), i.e., \\ p_1 x_1^1 + p_2 x_2^1 &= p_1 e_1^1 + p_2 e_2^1, \end{aligned}$$

which is the budget line for the 1 person.

Preferences and Utilities: Assumptions

We assume:

- Preference relations to be continuous, strictly monotonic, and strictly convex
- The utility functions to be continuous, strictly monotonic and strictly quasi-concave

However, several of the results will hold under weaker conditions.

Question

What is the role of assumption that the utility functions are 'strictly guasi-concave'?

Let

- $u^1(.)$ denote the utility function for person 1
- $u^2(.)$ denote the utility function for person 2

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Competitive Equilibrium: 2×2 economy I

An allocation is $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ along with a price vector $\mathbf{p} = (p_1, p_2)$ is competitive equilibrium, if

1 $\hat{\mathbf{x}}^1 = (\hat{x}_1^1, \hat{x}_2^1)$ maximizes $u^1(.)$ subject to $p_1 x_1^1 + p_2 x_2^1 = p_1 e_1^1 + p_2 e_2^1$ **2** $\hat{\mathbf{x}}^2 = (\hat{x}_1^2, \hat{x}_2^2)$ maximizes $u^2(.)$ subject to $p_1 x_1^2 + p_2 x_2^2 = p_1 e_1^2 + p_2 e_2^2$ **3** $\hat{x}_1^1 + \hat{x}_1^2 = e_1^1 + e_1^2$ **4** $\hat{x}_1^2 + \hat{x}_2^2 = e_1^2 + e_2^2$

For 'well-behaved' utilities:

- 1. Implies : In equi. IC of person 1 will be tangent to her budget line.
- 2. Implies : In equi. IC of person 2 will be tangent to his budget line
- We know that: both of the demanded bundles, i.e., \hat{x}^1 and \hat{x}^2 lie on the same line. Why?
- 3 and 4 imply that the demanded bundles, i.e., \hat{x}^1 and \hat{x}^2 coincide. Why?

Competitive Equilibrium: 2 × 2 economy

Ram Singh (DSE)

Market Equilibrium

< A

э

2×2 Competitive Equilibrium: Properties I

- Note at the equilibrium allocation, \$\hf x = (\hf x^1, \hf x^2)\$, the ICs are tangent to each other
- Therefore, the equilibrium allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ is Pareto Optimum.

Question

Suppose, $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ is a Competitive (market) equilibrium allocation

- Are unilateral deviations from $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ profitable?
- Does the eq. allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ belong to the core?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Competitive Equilibrium: $N \times M$ economy I

Consider a $N \times M$ economy denoted by $(u^i(.), \mathbf{e})$, where

$$e = (e^1, e^2, ..., e^N).$$

An allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, ..., \hat{\mathbf{x}}^N)$ along with a price vector $\mathbf{p} = (p_1, ..., p_M)$ is a competitive equilibrium, if the following conditions are satisfied:

First: For each i = 1, ..., N, $\hat{\mathbf{x}}^i$ maximizes $u^i(.)$, subject to $\mathbf{p}.\mathbf{x}^i = \mathbf{p}.\mathbf{e}^i$. That is, $\hat{\mathbf{x}}^i$ solves

$$\max_{\mathbf{x}^{i}} \{ \boldsymbol{u}^{i}(\mathbf{x}^{i}) \}$$
(1)

subject to $p_1 x_1^i + ... + p_M x_M^i = p_1 e_1^i + ... + p_M e_M^i$.

Second: For all j = 1, ..., M

$$\sum_{i=1}^{N} \hat{x}_{j}^{i} = \sum_{i=1}^{N} \boldsymbol{e}_{j}^{i}$$

(2)

Competitive Equilibrium: $N \times M$ economy II

Definition

 $(\hat{\mathbf{x}}; \mathbf{p})$, i.e., $(\hat{\mathbf{x}}^1, ..., \hat{\mathbf{x}}^N; \mathbf{p})$ is called a Competitive or Walrasian equilibrium, if $(\hat{\mathbf{x}}^i, \mathbf{p})$ together satisfy (1) and (2) simultaneously, for all i = 1, ..., N.

Definition

The set of Walrasian/Competitive Equilibria, $W(u^i(.), \mathbf{e}^i)_{N \times M}$, is given by

 $W(u^{i}(.), \mathbf{e}^{i})_{N \times M} = \{\mathbf{x} = (\mathbf{x}^{1}, ..., \mathbf{x}^{N}) \mid \exists \mathbf{p} \text{ such that } (\mathbf{x}^{i}, \mathbf{p}) \text{ satisfy (1) and (2), } \}$

simultaneously, for all i = 1, ..., N.

Competitive Equilibrium: $N \times M$ economy III

Remark

We will show that:

- Walrasian/Competitive equilibrium may not exist. However,
- If utilities fns are continuous, strictly increasing and strictly quasi-concave, there does exist at least one equilibrium.
- In general there can be more than one Competitive equilibrium.
- Walrasian/Competitive equilibrium depends on the vector of initial endowments, i.e., **e**.

< ロ > < 同 > < 三 > < 三 >

Some Observations I

Let $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, ..., \hat{\mathbf{x}}^N)$ be a Competitive equilibrium allocation.

Proposition

Suppose, (\hat{x}, p) is a competitive equilibrium. Then, $\hat{x} = (\hat{x}^1, ..., \hat{x}^N)$ is a feasible allocation.

Proposition

Suppose, $(\hat{\mathbf{x}}, \mathbf{p})$ is a competitive equilibrium. Take a bundle \mathbf{y}^i . If $u^i(\mathbf{y}^i) > u^i(\hat{\mathbf{x}}^i)$, then $\mathbf{p}.\mathbf{y}^i > \mathbf{p}.\mathbf{e}^i$. Formally,

$$u^{i}(\mathbf{y}^{i}) > u^{i}(\hat{\mathbf{x}}^{i}) \Rightarrow \mathbf{p}.\mathbf{y}^{i} > \mathbf{p}.\mathbf{e}^{i}$$
$$u^{i}(\mathbf{y}^{i}) > u^{i}(\hat{\mathbf{x}}^{i}) \Rightarrow \left[\sum_{j=1}^{J} p_{j}y_{j}^{i} > \sum_{j=1}^{J} p_{j}e_{j}^{i}\right]$$

< ロ > < 同 > < 回 > < 回 >

Proposition

Suppose, $(\hat{\mathbf{x}}, \mathbf{p})$ is a competitive equilibrium, and the individual preferences are monotonic, i.e., u^i is increasing. Take a bundle \mathbf{y}^i . If $u^i(\mathbf{y}^i) \ge u^i(\hat{\mathbf{x}}^i)$, then $\mathbf{p}.\mathbf{y}^i \ge \mathbf{p}.\mathbf{e}^i$. Formally,

$$\begin{split} u^{l}(\mathbf{y}^{l}) &\geq u^{l}(\hat{\mathbf{x}}^{l}) \quad \Rightarrow \quad \mathbf{p}.\mathbf{y}^{l} \geq \mathbf{p}.\mathbf{e}^{l} \; \textit{i.e.}, \\ \mathbf{p}.\mathbf{y}^{l} &< \mathbf{p}.\mathbf{e}^{l} \quad \Rightarrow \quad u^{l}(\mathbf{y}^{l}) < u^{l}(\hat{\mathbf{x}}^{l}) \end{split}$$

Ram Singh (DSE)

A (1) > A (2) > A

Competitive Equilibrium and Core I

Let

- $W(u^i(.), e^i)_{N \times M}$ denote the set of Walrasian/competitive allocations.
- $C(u^i(.), \mathbf{e}^i)_{N \times M}$ denote the set of Core allocations.

For a 2 × 2 economy, suppose an allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ along with a price vector $\mathbf{p} = (p_1, p_2)$ is competitive equilibrium. Then,

- Individual i prefers (x̂ⁱ at least as much as eⁱ
- Indifference curves of the individuals are tangent to each other
- Allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ is Pareto Optimum
- In view of the above, allocation $\hat{\mathbf{x}} = (\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2)$ is in the Core.

・ロン ・雪 と ・ 同 と ・ 同 と

Competitive Equilibrium and Core II

So, for a 2 \times 2 economy,

$$\mathbf{x} \in W(u^i(.), \mathbf{e}^i) \Rightarrow \mathbf{x} \in C(u^i(.), \mathbf{e}^i).$$

Theorem

Consider an exchange economy $(u^i(.), \mathbf{e}^i)_{N \times M}$, where individual preferences are monotonic, i.e., u^i is increasing. If \mathbf{x} is a WEA, then $\mathbf{x} \in C(u^i(.), \mathbf{e}^i)_{N \times M}$. Formally,

$$W(u^{i}(.), \mathbf{e}^{i})_{N \times M} \subseteq C(u^{i}(.), \mathbf{e}^{i})_{N \times M}.$$

Proof: Take any WEA, say **x**. Let, **x** along with the price vector **p** be a WE. Suppose

$$\mathbf{x} \notin C(\mathbf{e}).$$

Therefore, there exists a 'blocking coalition' against x. That is,

Competitive Equilibrium and Core III

there exists a set $S \subseteq N$ and an 'allocation' say **y**, s.t.

$$\sum_{i \in \mathcal{S}} \mathbf{y}^i = \sum_{i \in \mathcal{S}} \mathbf{e}^i \tag{3}$$

Moreover,

$$u^{i}(\mathbf{y}^{i}) \geq u^{i}(\mathbf{x}^{i})$$
 for all $i \in S$ (4)

and for some $i' \in S$

$$u^{i}(\mathbf{y}^{i'}) > u^{i}(\mathbf{x}^{i'}).$$

$$(5)$$

(3) implies

$$\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{y}^{i}=\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{e}^{i}$$
(6)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Competitive Equilibrium and Core IV

(4) implies

$$\mathbf{p}.\mathbf{y}^i \ge \mathbf{p}.\mathbf{x}^i = \mathbf{p}.\mathbf{e}^i, \text{ for all } i \in S$$
 (7)

(5) implies: for some $i' \in S$

$$\mathbf{p}.\mathbf{y}^{i'} > \mathbf{p}.\mathbf{x}^{i'} = \mathbf{p}.\mathbf{e}^{i'}.$$
(8)

(7) and (8) together give us:

$$\mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{y}^i > \mathbf{p}.\sum_{i\in\mathcal{S}}\mathbf{e}^i \tag{9}$$

But, (6) and (9) are mutually contradictory. Therefore,

 $\mathbf{x} \in C(\mathbf{e}).$

Competitive Equilibrium and Pareto Optimality

So, we have proved the following:

Theorem

Consider an exchange economy $(u^i, \mathbf{e}^i)_{i \in \{1,..,N\}}$, where u^i is strictly increasing, for all i = 1, .., N.

Every WEA is Pareto optimum.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Competitive Equilibrium: Merits and Demerits

Question

- Is the price/market economy better than the barter economy, in terms of its functioning?
- Is the price/market economy better than the barter economy, in terms of the outcome achieved?

Question

- What are the limitations of a market economy?
- Can these limitations be overcome?

A I > A = A A